Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs

被引:53
|
作者
Ye, Zeyuan [1 ]
Wu, Han [1 ]
Xu, Yulin [1 ]
Hua, Tao [1 ]
Chen, Guohao [1 ]
Chen, Zhanxiang [1 ]
Yin, Xiaojun [1 ]
Huang, Manli [1 ]
Xu, Ke [1 ]
Song, Xiufang [1 ]
Huang, Zhongyan [1 ]
Lv, Xialei [1 ]
Miao, Jingsheng [1 ]
Cao, Xiaosong [1 ]
Yang, Chuluo [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab New Informat Display & Storage M, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
circularly polarized thermally activated delayed fluorescence; deep-blue emission; helicene; multiple resonance; narrowband electroluminescence; MULTIPLE BORYLATION; ELECTROLUMINESCENCE; COMPLEXES; ACCESS;
D O I
10.1002/adma.202308314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 x 10-3. Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays. A helical extension strategy is introduced to engineer deep-blue hetero[6]helicene-based emitters for circularly polarized OLEDs. Besides satisfactory chiroptical performance, this strategy endows the emitters with enhanced quantum yield and narrower emission bands compared to their precursor. The devices display record efficiencies, high color purity, and distinct circularly polarized electroluminescence, marking a significant advance in chiroptical materials for high-definition displays.image
引用
收藏
页数:12
相关论文
共 50 条
  • [11] A methyl-shield strategy enables efficient blue thermally activated delayed fluorescence hosts for high-performance fluorescent OLEDs
    Ran, You
    Yang, Ge
    Liu, Yang
    Han, Weiguo
    Gao, Ge
    Su, Rongchuan
    Bin, Zhengyang
    You, Jingsong
    MATERIALS HORIZONS, 2021, 8 (07) : 2025 - 2031
  • [12] Efficient Deep-Blue Electroluminescence Employing Heptazine-Based Thermally Activated Delayed Fluorescence
    Li, Jie
    Zhang, Jincheng
    Gong, Heqi
    Tao, Li
    Wang, Yanqing
    Guo, Qiang
    PHOTONICS, 2021, 8 (08)
  • [13] Engineering the Macrocyclic Donor Structures towards Deep-Blue Thermally Activated Delayed Fluorescence Emitters
    Lu, Chen-Han
    Lin, Chun-Yen
    Zeng, Shi-Xian
    Chou, Yu-Pin
    Chen, Chia-Hsun
    Liu, Yi-Hung
    Lee, Jiun-Haw
    Wu, Chung-Chih
    Wong, Ken-Tsung
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 35239 - 35250
  • [14] Thermally Activated Delayed Fluorescence with Nanosecond Emission Lifetimes and Minor Concentration Quenching: Achieving High-Performance Nondoped and Doped Blue OLEDs
    Wu, Shao-Jie
    Fu, Xi-Feng
    Zhang, Dong-Hai
    Sun, Yu-Fu
    Lu, Xin
    Lin, Fu-Lin
    Meng, Lingyi
    Chen, Xu-Lin
    Lu, Can-Zhong
    ADVANCED MATERIALS, 2024, 36 (26)
  • [15] Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers
    Xu, Yincai
    Wang, Qingyang
    Cai, Xinliang
    Li, Chenglong
    Wang, Yue
    ADVANCED MATERIALS, 2021, 33 (21)
  • [16] Novel Strategy to Develop Exciplex Emitters for High-Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials
    Liu, Wei
    Chen, Jia-Xiong
    Zheng, Cai-Jun
    Wang, Kai
    Chen, Dong-Yang
    Li, Fan
    Dong, Yu-Ping
    Lee, Chun-Sing
    Ou, Xue-Mei
    Zhang, Xiao-Hong
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (12) : 2002 - 2008
  • [17] An S-shaped double helicene showing both multi-resonance thermally activated delayed fluorescence and circularly polarized luminescence
    dos Santos, John Marques
    Sun, Dianming
    Moreno-Naranjo, Juan Manuel
    Hall, David
    Zinna, Francesco
    Ryan, Sean T. J.
    Shi, Wenda
    Matulaitis, Tomas
    Cordes, David B.
    Slawin, Alexandra M. Z.
    Beljonne, David
    Warriner, Stuart L.
    Olivier, Yoann
    Fuchter, Matthew J.
    Zysman-Colman, Eli
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (12) : 4861 - 4870
  • [18] Luminescent Chiral Exciplexes with Sky-Blue and Green Circularly Polarized-Thermally Activated Delayed Fluorescence
    Sumsalee, Patthira
    Abella, Laura
    Kasemthaveechok, Sitthichok
    Vanthuyne, Nicolas
    Cordier, Marie
    Pieters, Gregory
    Autschbach, Jochen
    Crassous, Jeanne
    Favereau, Ludovic
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (66) : 16505 - 16511
  • [19] High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter
    Wu, Shuanghong
    Aonuma, Masaki
    Zhang, Qisheng
    Huang, Shuping
    Nakagawa, Tetsuya
    Kuwabara, Kazuhiro
    Adachi, Chihaya
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (03) : 421 - 424
  • [20] Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials
    Wada, Yoshimasa
    Kubo, Shosei
    Kaji, Hironori
    ADVANCED MATERIALS, 2018, 30 (08)