Selfadhesivity in Gaussian conditional independence structures

被引:1
作者
Boege, Tobias
机构
关键词
Selfadhesivity; Adhesive extension; Positive definite matrix; Conditional independence; Structural semigraphoid; Orientable gaussoid;
D O I
10.1016/j.ijar.2023.109027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selfadhesivity is a property of entropic polymatroids which guarantees that the polymatroid can be glued to an identical copy of itself along arbitrary restrictions such that the two pieces are independent given the common restriction. We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:11
相关论文
共 31 条
[1]  
Boege T, 2022, ANN MATH ARTIF INTEL, V90, P645, DOI 10.1007/s10472-021-09780-0
[2]   The Geometry of Gaussoids [J].
Boege, Tobias ;
D'Ali, Alessio ;
Kahle, Thomas ;
Sturmfels, Bernd .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (04) :775-812
[3]  
Boege Tobias, 2022, Ph.D. thesis, DOI [10.25673/86275, DOI 10.25673/86275]
[4]  
Bouckaert R, 2010, J MACH LEARN RES, V11, P3453
[5]   Balanced information inequalities [J].
Chan, TH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) :3261-3267
[6]   Book Inequalities [J].
Csirmaz, Laszlo .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) :6811-6818
[7]  
Gleixner A, 2018, SCIP OPTIMIZAION SUI
[8]  
Gleixner A., 2012, Technical Report 12-19
[9]  
Gleixner A. M., 2015, 1515 ZIB
[10]   POSITIVE DEFINITE COMPLETIONS OF PARTIAL HERMITIAN MATRICES [J].
GRONE, R ;
JOHNSON, CR ;
SA, EM ;
WOLKOWICZ, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :109-124