Applying Adaptive Neuro-Fuzzy Inference System to Improve Typhoon Intensity Forecast in the Northwest Pacific

被引:1
|
作者
Lin, Shiu-Shin [1 ]
Song, Jheng-Hua [1 ]
Zhu, Kai-Yang [1 ]
Liu, Yi-Chuan [1 ]
Chang, Hsien-Cheng [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Civil Engn, Taoyuan City 320314, Taiwan
关键词
typhoon intensity forecast; adaptive neuro-fuzzy inference system; stepwise regression procedure; SHIPS; subtractive clustering; PREDICTION SCHEME; NETWORKS; MODEL; ANFIS;
D O I
10.3390/w15152855
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Typhoon intensity forecast is an important issue. The objective of this study is to construct a 5-day 12-hourly typhoon intensity forecast model based on the adaptive neuro-fuzzy inference systems (ANFIS) to improve the typhoon intensity forecast in the Northwest Pacific. It analyzed the improvement of the ANFIS typhoon intensity forecast model by comparing it with the MLR model when only the atmospheric factor or both atmospheric and oceanic factors are considered. This study collected the SHIPS (Statistical Hurricane Intensity Prediction Scheme) developmental data of typhoons in the Northwest Pacific before landing from 2000 to 2012. The input factors of the ANFIS model were simplified by the stepwise regression procedure (SRP). Subtractive clustering (SC) was used to determine the number of ANFIS rules and to reduce model complexity. Model Index (MI) was taken as the clustering standard of SC to determine the network architecture of the ANFIS typhoon intensity forecast model. The simulated results show that the MI could effectively determine the radius of influence of SC. The typhoon intensity forecast was significantly improved after oceanic environmental factors were added. The improvement of RMSE of ANFIS was the highest at 84 h; the improvement of ANFIS on the underestimated ratio was primarily positive. The Typhoon Songda case study shows that the maximum bias of ANFIS is greatly improved, at 60 h of the lead time, and the improvement percentage of maximum bias is the highest (39%). Overall, the ANFIS model could effectively improve the MLR model in typhoon intensity forecast.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Adaptive Neuro-Fuzzy Inference System for Assessing the Maintainability of the Software
    Therasa, P. R.
    Vivekanandan, P.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 204 - 212
  • [32] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84
  • [33] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523
  • [34] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [35] A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm
    Varnamkhasti, M. Jalali
    Hassan, Nasruddin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (03) : 793 - 796
  • [36] Adaptive neuro-fuzzy inference system for classification of ECG signal
    1600, IEEE Computer Society : 1162 - 1166
  • [37] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [38] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [39] Adaptive Neuro-Fuzzy Inference System for Controlling a Steam Valve
    Al-Ridha, Moatasem Yaseen
    Al-Nima, Raid Rafi Omar
    Anaz, Ammar Sameer
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2019, : 156 - 161
  • [40] Glaucoma detection using adaptive neuro-fuzzy inference system
    Huang, Mei-Ling
    Chen, Hsin-Yi
    Huang, Jian-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 458 - 468