Overview of Surface Modification Strategies for Improving the Properties of Metastable Austenitic Stainless Steels

被引:42
作者
Rezayat, Mohammad [1 ,2 ]
Karamimoghadam, Mojtaba [3 ]
Moradi, Mahmoud [4 ]
Casalino, Giuseppe [3 ]
Rovira, Joan Josep Roa
Mateo, Antonio [1 ,2 ]
机构
[1] Univ Politecn Catalunya BarcelonaTECH, Ctr Struct Integr Micromech & Reliabil Mat CIEFMA, Dept Mat Sci & Engn, Barcelona 08019, Spain
[2] Univ Politecn Catalunya BarcelonaTECH, Barcelona Res Ctr Multiscale Sci & Engn, Barcelona 08019, Spain
[3] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70125 Bari, Italy
[4] Univ Northampton, Fac Arts Sci & Technol, Northampton NN1 5PH, England
关键词
metastable austenitic stainless steels (MASS); transformation induce plasticity (TRIP) steels; surface modification treatments; microstructure; mechanical properties; RESIDUAL-STRESS STATE; FATIGUE-CRACK GROWTH; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; TRIBOLOGICAL CHARACTERISTICS; COATING MATERIALS; BEHAVIOR; MICROSTRUCTURE; NITROGEN; MARTENSITE;
D O I
10.3390/met13071268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metastable austenitic stainless steels (MASS) are widely used in various industrial applications due to their exceptional compromise between mechanical properties and corrosion resistance. However, the mechanical properties of these materials can be further enhanced by surface treatments. This paper reviews various surface treatment methodologies used to improve the mechanical properties of MASS, with particular attention to laser treatments. The effects of these surface treatments on the microstructure and chemical composition in the thermal affected zone of the MASS are discussed, and their impact on the material's mechanical properties, such as hardness, tensile strength, and fatigue life, are investigated in detail. Additionally, the paper highlights the limitations of these surface treatments and points out some areas where further research is needed. The findings presented can be used to guide the selection of appropriate surface treatment techniques for specific applications, ultimately improving the performance and lifespan of MASS in various industrial settings.
引用
收藏
页数:27
相关论文
共 50 条
[21]   Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels [J].
Queiroga, Lucas Renato ;
Marcolino, Gisele Fernanda ;
Santos, Matheus ;
Rodrigues, Gabriele ;
dos Santos, Carlos Eduardo ;
Brito, Pedro .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (54) :29027-29033
[22]   Influence of nitrogen alloying on properties of Fe-18Cr-12Mn-XN austenitic stainless steels [J].
Behjati, P. ;
Kermanpur, A. ;
Najafizadeh, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 588 :43-48
[23]   Influence of surface morphology and roughness on water wetting properties of low temperature nitrided austenitic stainless steels [J].
Borgioli, Francesca ;
Galvanetto, Emanuele ;
Bacci, Tiberio .
MATERIALS CHARACTERIZATION, 2014, 95 :278-284
[24]   Kinematic and thermal characteristic of discontinuous plastic flow in metastable austenitic stainless steels [J].
Tabin, J. .
MECHANICS OF MATERIALS, 2021, 163
[25]   Characterization of the mechanical properties of low-nickel austenitic stainless steels [J].
Milititsky, M. ;
De Wispelaere, N. ;
Petrov, R. ;
Ramos, J. E. ;
Reguly, A. ;
Hanninen, H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 498 (1-2) :289-295
[26]   Structure and properties of low temperature plasma carburized austenitic stainless steels [J].
Souza, R. M. ;
Ignat, M. ;
Pinedo, C. E. ;
Tschiptschin, A. P. .
SURFACE & COATINGS TECHNOLOGY, 2009, 204 (6-7) :1102-1105
[27]   Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels [J].
Huang Jun-xia ;
Ye Xiao-ning ;
Xu Zhou .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2012, 19 (10) :59-63
[28]   The effect of boron on the properties and structure of austenitic stainless steels [J].
Babenko, A. A. ;
Shartdinov, R. R. ;
Salina, V. A. ;
Gulyakov, V. S. .
METALLURGIST, 2024, 68 (07) :1032-1039
[29]   Stacking Fault Energy in Relation to Hydrogen Environment Embrittlement of Metastable Austenitic Stainless CrNi-Steels [J].
Fussik, Robert ;
Egels, Gero ;
Theisen, Werner ;
Weber, Sebastian .
METALS, 2021, 11 (08)
[30]   Combined plasma surface modification of austenitic stainless steel for bipolar plates [J].
Nikolov, K. ;
Bunk, K. ;
Jung, A. ;
Gerlach, J. W. ;
Kaestner, P. ;
Klages, C. -P. .
SURFACE & COATINGS TECHNOLOGY, 2017, 328 :142-151