A Novel Competitive Temporal Convolutional Network for Remaining Useful Life Prediction of Rolling Bearings

被引:12
|
作者
Wang, Wei [1 ]
Zhou, Gongbo [1 ]
Ma, Guoqing [1 ]
Yan, Xiaodong [1 ]
Zhou, Ping [1 ]
He, Zhenzhi [2 ]
Ma, Tianbing [3 ]
机构
[1] China Univ Min & Technol, Sch Mechatron Engn, Jiangsu Key Lab Mine Mech & Elect Equipment, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Mech & Elect Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] State Key Lab Min Response & Disaster Prevent & Co, Huainan 232000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Competitive temporal convolutional network (CTCN); dual competitive attention (DCA); global large-pooled feature; remaining useful life (RUL) prediction; rolling bearing;
D O I
10.1109/TIM.2023.3293877
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has been wildly utilized in the remaining useful life (RUL) prediction of rolling bearings. Extracting valuable features effectively is a challenging task in this field. In this article, we propose a novel competitive temporal convolutional network (CTCN) to predict the RUL of rolling bearings. First, a novel dual competitive attention (DCA) is proposed to enhance the feature extraction of the deep learning model. In DCA, a unique global competition (GC) module is designed to gather the global large-pooled features as the benchmark of attention calculation, and a new multidimensional competition (MC) module is proposed to fuse the attention in two dimensions. Then, a competitive temporal convolutional block (CTCB) based on the DCA and temporal convolutional network (TCN) is designed to extract high-level features from the input sequences. Finally, a CTCN is constructed to map the original vibration signals to the RUL. The experimental results illustrate that the proposed CTCN is effective, and DCA can significantly improve the accuracy of RUL prediction. The ablation experiments show that the proposed GC and MC can improve the performance of the proposed attention. They reduce the root mean square error (RMSE) on average by 0.0095/8.76% and 0.0031/2.95% and the mean absolute error (MAE) on average by 0.0074/8.46% and 0.0033/3.82%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Research on remaining useful life prediction methods for rolling bearings based on a novel gated unit
    Ma, Ke
    Huang, Weiguo
    Ding, Chuancang
    Shi, Juanjuan
    Wang, Jun
    Shen, Changqing
    Jiang, Xingxing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [32] Remaining Useful Life Prediction of Machinery: A New Multiscale Temporal Convolutional Network Framework
    Deng, Feiyue
    Bi, Yan
    Liu, Yongqiang
    Yang, Shaopu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [33] On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor
    Bienefeld, Christoph
    Kirchner, Eckhard
    Vogt, Andreas
    Kacmar, Marian
    LUBRICANTS, 2022, 10 (04)
  • [34] Remaining useful life prediction combining temporal convolutional network with nonlinear target function
    Liu, Bin
    Xu, Jing
    Sun, Chaoli
    Cui, Xueying
    Xie, Xiufeng
    Zhi, Hongying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [35] Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
    Wang, Haitao
    Yang, Jie
    Shi, Lichen
    Wang, Ruihua
    SENSORS, 2022, 22 (23)
  • [36] Distributed Attention-Based Temporal Convolutional Network for Remaining Useful Life Prediction
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    Jia, Lei
    Li, Qiqiang
    Pang, Fuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9594 - 9602
  • [37] Temporal convolution long short-term memory network with multiple attention for remaining useful life prediction of rolling bearings
    Zhang, Jiashuo
    He, Deqiang
    Wu, Jinxin
    Jin, Zhenzhen
    Xiang, Weibin
    Shan, Sheng
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [38] Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings
    Gao, Pengjie
    Wang, Junliang
    Shi, Ziqi
    Ming, Weiwei
    Chen, Ming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [39] Prediction of remaining useful life of rolling bearing based on fractal dimension and convolutional neural network
    Ding, Guorong
    Wang, Wenbo
    Zhao, Jiaojiao
    MEASUREMENT & CONTROL, 2022, 55 (1-2): : 79 - 93
  • [40] Temporal convolutional attention network for remaining useful life estimation
    Liu L.
    Pei X.
    Lei X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2375 - 2386