Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping

被引:4
作者
Kang, Jingrui [1 ,2 ]
Guo, Xu [1 ,2 ]
Gu, Rui [1 ,2 ]
Hao, Honglei [1 ,2 ]
Tang, Yi [1 ,2 ]
Wang, Jiahui [1 ,2 ]
Jin, Li [1 ,2 ]
Li, Hongfei [3 ]
Wei, Xiaoyong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Elect Mat Res Lab, Key Lab,Minist Educ, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[3] Shanghai Polytech Univ, Sch Energy & Mat, Shanghai Key Lab Engn Mat Applicat & Evaluat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
Li1.3Al0.3Ti1.7(PO4)(3) (LATP) solid electrolyte; anion doping; ionic conductivity; cyclic performance; IONIC-CONDUCTIVITY; WATER; RELAXATION; TRANSPORT;
D O I
10.1007/s12274-023-5890-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nowadays, the majority of the studies on the substitution are focused on cations (such as Y3+, Ti4+, P5+, etc.) in Li1.3Al0.3Ti1.7(PO4)(3) (LATP), while there are few studies on the substitution of anion O2-. In this work, the modified LATP with a series of LiCl (LATPClx, x = 0.1, 0.2, 0.3, 0.4) additives is prepared to enhance ionic conductivity. The successful introduction of Cl- makes the length of the c axis decrease from 20.822(2) to 20.792(1) angstrom, and the bulk conductivity of 2.13 x 10(-3) S center dot cm(-1) is achieved in LATPCl0.3. Moreover, the Al/Ti-O-1/Cl-1 and Al/Ti-O-2/Cl-2 distance decrease, while the Li-1-O-2/Cl-2 distance increases. Lithium ions migrate more easily in the nanochannel of M3-M1-M3. In addition, the LiCl additive increases the relative density and the grain boundary conductivity of LATPClx compounds. Naturally, a higher ionic conductivity of 2.12 x 10(-4) S center dot cm(-1) and a low activation energy of 0.30 eV are obtained in LATPCl0.3. Correspondingly, the symmetric cell exhibits a low overpotential of +/- 50 mV for over 200 h in LATPCl0.3. The solid-state Li divide LATPCl0.3|NCM811 (NCM811 = LiNi0.8Co0.1Mn0.1O2) battery exhibits high initial capacity 185.1 mAh center dot g(-1) with a capacity retention rate of 95.4% after 100 cycles at 0.5 C. This result suggests that LiCl additive is an effective strategy to promote electrochemical properties of LATP solid electrolyte and can be considered for reference to other inorganic solid electrolytes systems.
引用
收藏
页码:1465 / 1472
页数:8
相关论文
共 50 条
  • [31] Standardization of ionic conductivity measurements in Li1.3Al0.3Ti1.7(PO4)3-polymer composite electrolytes
    Jacob, Megha Sara
    Doddi, Nikhil
    Shanmugam, Vasu
    Prasanna, Gopikrishnan Ebenezer
    Peddi, Mahender
    Vedarajan, Raman
    Moodakare, Sahana B.
    Gopalan, Raghavan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 286
  • [32] Preparation and Research of new Polyelectrolyte based on Li1.3Al0.3Ti1.7(PO4)3 for all solid state batteries
    Liang, Xinghua
    Jiang, Xingtao
    Yang, Dayong
    Zhang, Yu
    Lan, Lingxiao
    Wang, Zhenjiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (04):
  • [33] Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries
    Li, Shuai
    Lu, Jiaze
    Geng, Zhen
    Chen, Yue
    Yu, Xiqian
    He, Meng
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1195 - 1202
  • [34] Li1.3Al0.3Ti1.7(PO4)3 Behavingas a Fast Ionic Conductor and Bridge to Boost the Electrochemical Performance of Li4Ti5O12
    Han, Jian-Ping
    Zhang, Bo
    Wang, Li-Ying
    Zhu, Hui-Ling
    Qi, Yong-Xin
    Yin, Long-Wei
    Li, Hui
    Lun, Ning
    Bai, Yu-Jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06): : 7273 - 7282
  • [35] Combined quantitative microscopy on the microstructure and phase evolution in Li1.3Al0.3Ti1.7(PO4)3 ceramics
    Gunduz, Deniz Cihan
    Schierholz, Roland
    Yu, Shicheng
    Tempel, Hermann
    Kungl, Hans
    Eichel, Ruediger-A.
    JOURNAL OF ADVANCED CERAMICS, 2020, 9 (02) : 149 - 161
  • [36] The influence of phosphorous source on the properties of NASICON lithiumion conductor Li1.3Al0.3Ti1.7(PO4)3
    Lu, Xiaojuan
    Wang, Rui
    Zhang, Feng
    Li, Jing
    SOLID STATE IONICS, 2020, 354
  • [37] Li-Ion Conductive Li1.3Al0.3Ti1.7(PO4)3 (LATP) Solid Electrolyte Prepared by Cold Sintering Process with Various Sintering Additives
    Vinnichenko, Mykola
    Waetzig, Katja
    Aurich, Alf
    Baumgaertner, Christoph
    Herrmann, Mathias
    Ho, Chang Won
    Kusnezoff, Mihails
    Lee, Chang Woo
    NANOMATERIALS, 2022, 12 (18)
  • [38] Preparation and Electrochemical Characterization of Y-Doped Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes for Lithium-Metal Batteries
    Yao, Zhongran
    Qi, Fen
    Sun, Qiang
    Ye, Lin
    Yang, Xiaowei
    Chao, Guojie
    Tang, Pei
    Zhu, Kongjun
    CRYSTALS, 2025, 15 (01)
  • [39] Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films
    Xian Ming Wu
    Shang Chen
    Fa Ren Mai
    Jun Hai Zhao
    Ze Qiang He
    Ionics, 2013, 19 : 589 - 593
  • [40] Atomic welding enhancing the electromechanical performance of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) solid electrolyte
    Zhou, Qiqi
    Zhong, Cong
    Wang, Shiqi
    Jiang, Pengfei
    Wang, Lifan
    Wang, Xuefeng
    Zhan, Chun
    ENERGY STORAGE MATERIALS, 2025, 74