ODTC: An online darknet traffic classification model based on multimodal self-attention chaotic mapping features

被引:0
|
作者
Zhai, Jiangtao [1 ]
Sun, Haoxiang [1 ]
Xu, Chengcheng [1 ]
Sun, Wenqian [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 08期
基金
中国国家自然科学基金;
关键词
darknet traffic; deep learning; logistic chaos map; multi-head self-attention mechanism; online parameter update; NETWORK; DEEP; REPRESENTATION; INTERNET;
D O I
10.3934/era.2023259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Darknet traffic classification is significantly important to network management and security. To achieve fast and accurate classification performance, this paper proposes an online classification model based on multimodal self-attention chaotic mapping features. On the one hand, the payload content of the packet is input into the network integrating CNN and BiGRU to extract local space-time features. On the other hand, the flow level abstract features processed by the MLP are introduced. To make up for the lack of the indistinct feature learning, a feature amplification module that uses logistic chaotic mapping to amplify fuzzy features is introduced. In addition, a multi-head attention mechanism is used to excavate the hidden relationships between different features. Besides, to better support new traffic classes, a class incremental learning model is developed with the weighted loss function to achieve continuous learning with reduced network parameters. The experimental results on the public CICDarketSec2020 dataset show that the accuracy of the proposed model is improved in multiple categories; however, the time and memory consumption is reduced by about 50%. Compared with the existing state-of-the-art traffic classification models, the proposed model has better classification performance.
引用
收藏
页码:5056 / 5082
页数:27
相关论文
共 50 条
  • [1] SELF-ATTENTION BASED DARKNET NAMED ENTITY RECOGNITION WITH BERT METHODS
    Chen, Yuxuan
    Guo, Yubin
    Jiang, Hong
    Ding, Jianwei
    Chen, Zhouguo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2021, 17 (06): : 1973 - 1988
  • [2] SAFSN: A Self-Attention Based Neural Network for Encrypted Mobile Traffic Classification
    Zhang, Chengyuan
    An, Changqing
    Wang, Jessie Hui
    Zhao, Ziyi
    Yu, Tao
    Wang, Jilong
    IEEE CONGRESS ON CYBERMATICS / 2021 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS (ITHINGS) / IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) / IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) / IEEE SMART DATA (SMARTDATA), 2021, : 330 - 337
  • [3] Mineral Prospectivity Mapping Using Deep Self-Attention Model
    Yin, Bojun
    Zuo, Renguang
    Sun, Siquan
    NATURAL RESOURCES RESEARCH, 2023, 32 (01) : 37 - 56
  • [4] Efficient Road Traffic Video Congestion Classification Based on the Multi-Head Self-Attention Vision Transformer Model
    Khalladi, Sofiane Abdelkrim
    Ouessai, Asmaa
    Benamara, Nadir Kamel
    Keche, Mokhtar
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2024, 25 (01) : 20 - 30
  • [5] The Multimodal Scene Recognition Method Based on Self-Attention and Distillation
    Sun, Ning
    Xu, Wei
    Liu, Jixin
    Chai, Lei
    Sun, Haian
    IEEE MULTIMEDIA, 2024, 31 (04) : 25 - 36
  • [6] Web service classification based on self-attention mechanism
    Jia, Zhichun
    Zhang, Zhiying
    Dong, Rui
    Yang, Zhongxuan
    Xing, Xing
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2164 - 2169
  • [7] Mineral Prospectivity Mapping Using Deep Self-Attention Model
    Bojun Yin
    Renguang Zuo
    Siquan Sun
    Natural Resources Research, 2023, 32 : 37 - 56
  • [8] Image classification model based on large kernel attention mechanism and relative position self-attention mechanism
    Liu S.
    Wei J.
    Liu G.
    Zhou B.
    PeerJ Computer Science, 2023, 9
  • [9] Image classification model based on large kernel attention mechanism and relative position self-attention mechanism
    Liu, Siqi
    Wei, Jiangshu
    Liu, Gang
    Zhou, Bei
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [10] Road Traffic Classification from Nighttime Videos Using the Multihead Self-Attention Vision Transformer Model and the SVM
    Khalladi, Sofiane Abdelkrim
    Ouessaia, Asmaa
    Keche, Mokhtar
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (05) : 544 - 554