Minimum upper bound of the Cayley transform of an orthogonal matrix multiplied by signed permutation matrices

被引:0
作者
Mitamura, Takuma [1 ]
Tanaka, Akira [2 ]
机构
[1] Res Inst Syst Planning Inc, Nihonkaikan, 18-6 Sakuragaoka, Shibuya, Tokyo 1500031, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, N14W9, Kita Ku, Sapporo, Hokkaido 0600814, Japan
关键词
Skew-symmetric matrix; Cayley transform; Orthogonal matrix; Signed permutation matrix;
D O I
10.1016/j.laa.2022.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
O'Dorney has proved that for any orthogonal matrix U, there exists a signature matrix D (a diagonal matrix with diagonal entries & PLUSMN;1) by which |sij| & LE; 1, where S = (sij) = Q(UD) the upper bound can be reduced to & RADIC;2 - 1 by multiplying by is the Cayley transform of UD. In this paper, we prove that a certain signed permutation matrix, instead of a signature matrix. & COPY; 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 4 条