Real-space solution to the electronic structure problem for nearly a million electrons

被引:6
作者
Dogan, Mehmet [1 ]
Liou, Kai-Hsin [2 ]
Chelikowsky, James R. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Oden Inst Comp Engn & Sci, Ctr Comp Mat, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
FINITE-DIFFERENCE FORMULATION; PARALLEL IMPLEMENTATION; SPARC ACCURATE;
D O I
10.1063/5.0150864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a Kohn-Sham density functional theory calculation of a system with more than 200 000 atoms and 800 000 electrons using a real-space high-order finite-difference method to investigate the electronic structure of large spherical silicon nanoclusters. Our system of choice was a 20 nm large spherical nanocluster with 202 617 silicon atoms and 13 836 hydrogen atoms used to passivate the dangling surface bonds. To speed up the convergence of the eigenspace, we utilized Chebyshev-filtered subspace iteration, and for sparse matrix-vector multiplications, we used blockwise Hilbert space-filling curves, implemented in the PARSEC code. For this calculation, we also replaced our orthonormalization + Rayleigh-Ritz step with a generalized eigenvalue problem step. We utilized all of the 8192 nodes (458 752 processors) on the Frontera machine at the Texas Advanced Computing Center. We achieved two Chebyshev-filtered subspace iterations, yielding a good approximation of the electronic density of states. Our work pushes the limits on the capabilities of the current electronic structure solvers to nearly 10(6) electrons and demonstrates the potential of the real-space approach to efficiently parallelize large calculations on modern high-performance computing platforms.
引用
收藏
页数:5
相关论文
共 42 条
[1]   Real-space pseudopotential method for computing the electronic properties of periodic systems [J].
Alemany, MMG ;
Jain, M ;
Kronik, L ;
Chelikowsky, JR .
PHYSICAL REVIEW B, 2004, 69 (07)
[2]   Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J].
Andrade, Xavier ;
Strubbe, David ;
De Giovannini, Umberto ;
Hjorth Larsen, Ask ;
Oliveira, Micael J. T. ;
Alberdi-Rodriguez, Joseba ;
Varas, Alejandro ;
Theophilou, Iris ;
Helbig, Nicole ;
Verstraete, Matthieu J. ;
Stella, Lorenzo ;
Nogueira, Fernando ;
Aspuru-Guzik, Alan ;
Castro, Alberto ;
Marques, Miguel A. L. ;
Rubio, Angel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) :31371-31396
[3]   Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations [J].
Banerjee, Amartya S. ;
Lin, Lin ;
Suryanarayana, Phanish ;
Yang, Chao ;
Pask, John E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (06) :2930-2946
[4]   Recent developments and applications of the real-space multigrid method [J].
Bernholc, J. ;
Hodak, Miroslav ;
Lu, Wenchang .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (29)
[5]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[6]  
Chelikowsky J.R., 1992, Basic Properties of Semiconductors. Ed. by, P59
[7]  
Chelikowsky J. R., 2003, HDB NUMERICAL ANAL, V10, P613
[8]   FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
SAAD, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1240-1243
[9]   The pseudopotential-density functional method applied to nanostructures [J].
Chelikowsky, JR .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (08) :R33-R50
[10]  
Cohen M. L., 1988, Electronic structure and optical properties of semiconductors