Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps

被引:2
|
作者
Buck, Alexa N. [1 ,5 ,6 ]
Buchholz, Sarah [2 ]
Schnupp, Jan W. [1 ,5 ]
Rosskothen-Kuhl, Nicole [1 ,2 ,3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Neurosci, Kowloon Tong, Hong Kong, Peoples R China
[2] Univ Freiburg, Sect Clin & Expt Otol, Dept Oto Rhino Laryngol, Neurobiol Res Lab, Killianst 5, D-79106 Freiburg, Germany
[3] Univ Freiburg, Bernstein Ctr Freiburg, Freiburg, Germany
[4] Univ Freiburg, Fac Biol, Freiburg, Germany
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
[6] Inst Pasteur, Inst Audit, Plast Cent Auditory Circuits, Paris, France
关键词
LATERAL SUPERIOR OLIVE; LOW-FREQUENCY NEURONS; AUDITORY BRAIN-STEM; ELECTRICAL-STIMULATION; TEMPORAL RESOLUTION; INFERIOR COLLICULUS; TIMING DIFFERENCES; DELAY SENSITIVITY; SPATIAL HEARING; FINE-STRUCTURE;
D O I
10.1038/s41598-023-30569-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates >= 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above similar to 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at>300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
引用
收藏
页数:15
相关论文
empty
未找到相关数据