Characterization and development of a plastid genome base editor, ptpTALECD

被引:12
|
作者
Nakazato, Issei [1 ,2 ]
Okuno, Miki [3 ]
Itoh, Takehiko [4 ]
Tsutsumi, Nobuhiro [1 ]
Arimura, Shin-ichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Lab Plant Mol Genet, 1-1-1 Yayoi Bunkyo Ku, Tokyo 1138657, Japan
[2] Japan Soc Promot Sci, 5-3-1 Kojimachi,Chiyoda Ku, Tokyo 1020083, Japan
[3] Kurume Univ, Dept Infect Med, Div Microbiol, Sch Med, 67 Asahi Machi, Kurume, Fukuoka 8300011, Japan
[4] Tokyo Inst Technol, Sch Life Sci & Technol, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
base editing; plastid genome; Arabidopsis thaliana; technical advance; MITOCHONDRIAL; TRANSFORMATION; MAINTENANCE; HOMOLOG; PLANT;
D O I
10.1111/tpj.16311
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 30 side of T and A, it was unclear whether it could also substitute Cs on the 30 side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECDtargeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 30 side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 30 side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.
引用
收藏
页码:1151 / 1162
页数:12
相关论文
共 50 条
  • [21] Does the Mode of Plastid Inheritance Influence Plastid Genome Architecture?
    Crosby, Kate
    Smith, David Roy
    PLOS ONE, 2012, 7 (09):
  • [22] Complete plastid genome of Kappaphycus alvarezii: insights of large-scale rearrangements among Florideophyceae plastid genomes
    Liu, Na
    Zhang, Lei
    Tang, Xianming
    Wang, Xumin
    Meinita, Maria Dyah Nur
    Wang, Guoliang
    Chen, Weizhou
    Liu, Tao
    JOURNAL OF APPLIED PHYCOLOGY, 2019, 31 (06) : 3997 - 4005
  • [23] Characterization and phylogenetic analysis of the complete plastid genome of Theobroma bicolor (Malvaceae) from Peru
    Tineo, Daniel
    Calderon, Martha S.
    Maicelo, Jorge L.
    Oliva, Manuel
    Huaman-Pilco, Angel F.
    Ananco, Oswaldo
    Bustamante, Danilo E.
    MITOCHONDRIAL DNA PART B-RESOURCES, 2024, 9 (02): : 227 - 232
  • [24] Characterization of the complete plastid genome of the perennial herb Astragalus complanatus Bunge (Fabales: Fabaceae)
    Yang, Jin
    MITOCHONDRIAL DNA PART B-RESOURCES, 2021, 6 (12): : 3440 - 3442
  • [25] Characterization of the complete plastid genome of a Chinese Endangered Species Rosa rugosa Thunb.
    Jiang, Hui
    He, Jun
    Meng, Jing
    MITOCHONDRIAL DNA PART B-RESOURCES, 2019, 4 (01): : 1679 - 1680
  • [26] THE PLASTID GENOME OF THE RED ALGA LAURENCIA
    Verbruggen, Heroen
    Costa, Joana F.
    JOURNAL OF PHYCOLOGY, 2015, 51 (03) : 586 - 589
  • [27] Strategies for complete plastid genome sequencing
    Twyford, Alex D.
    Ness, Rob W.
    MOLECULAR ECOLOGY RESOURCES, 2017, 17 (05) : 858 - 868
  • [28] Plastid genome evolution in mycoheterotrophic Ericaceae
    Thomas Braukmann
    Saša Stefanović
    Plant Molecular Biology, 2012, 79 : 5 - 20
  • [29] Characterization of the whole plastid genome sequence of Abies chensiensis (Pinaceae), an endangered endemic conifer in China
    Liu, Mi-Li
    Bai, Ji-Qing
    Dong, Wan-Lin
    Wang, Ruo-Nan
    Dong, Peng-Bin
    Wang, Ning-
    Liu, Hong-Yan
    Fang, Min-Feng
    MITOCHONDRIAL DNA PART B-RESOURCES, 2018, 3 (02): : 1141 - 1142
  • [30] Characterization of the complete plastid genome of Scutellaria microviolacea (Lamiaceae), a species endemic to Yunnan Province of China
    Wang, Yong-Chao
    Zhang, Zhi-Rong
    Yan, Li-Jun
    MITOCHONDRIAL DNA PART B-RESOURCES, 2022, 7 (05): : 758 - 760