Effects of target anisotropy on harmonic measure and mean first-passage time

被引:3
作者
Chaigneau, Adrien [1 ]
Grebenkov, Denis S. [1 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Lab Phys Matiere Condensee, CNRS, F-91120 Palaiseau, France
关键词
diffusion-controlled reaction; harmonic measure; mean first-passage time; anisotropy; 1ST PASSAGE TIME; NARROW ESCAPE; ASYMPTOTIC ANALYSIS; PART II; EIGENVALUE; EXPANSIONS; OPERATOR; DOMAINS; RATIO;
D O I
10.1088/1751-8121/acd313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the influence of target anisotropy on two characteristics of diffusion-controlled reactions: harmonic measure density and mean first-passage time. First, we compute the volume-averaged harmonic measure density on prolate and oblate spheroidal targets inside a confining domain in three dimensions. This allows us to investigate the accessibility of the target points to Brownian motion. In particular, we study the effects of confinement and target anisotropy. The limits of a segment and a disk are also discussed. Second, we derive an explicit expression of the mean first-passage time to such targets and analyze the effect of anisotropy. In particular, we illustrate the accuracy of the capacitance approximation for small targets.
引用
收藏
页数:23
相关论文
共 40 条
[1]   The harmonic measure of diffusion-limited aggregates including rare events [J].
Adams, D. A. ;
Sander, L. M. ;
Somfai, E. ;
Ziff, R. M. .
EPL, 2009, 87 (02)
[2]  
[Anonymous], 1953, Methods of Theoretical Physics
[3]   First-passage times to anisotropic partially reactive targets [J].
Chaigneau, Adrien ;
Grebenkov, Denis S. .
PHYSICAL REVIEW E, 2022, 105 (05)
[4]   Green's Function Problem of Laplace Equation with Spherical and Prolate Spheroidal Boundaries by Using the Null-Field Boundary Integral Equation [J].
Chang, Yu-Lung ;
Lee, Ying-Te ;
Jiang, Li-Jie ;
Chen, Jeng-Tzong .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (05)
[5]   Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps [J].
Cheviakov, A. F. ;
Ward, M. J. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (7-8) :1394-1409
[6]   AN ASYMPTOTIC ANALYSIS OF THE MEAN FIRST PASSAGE TIME FOR NARROW ESCAPE PROBLEMS: PART II: THE SPHERE [J].
Cheviakov, Alexei F. ;
Ward, Michael J. ;
Straube, Ronny .
MULTISCALE MODELING & SIMULATION, 2010, 8 (03) :836-870
[7]   HARMONIC MEASURE AROUND A LINEARLY SELF-SIMILAR TREE [J].
EVERTSZ, CJG ;
MANDELBROT, BB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :1781-1797
[8]   BEHAVIOR OF THE HARMONIC MEASURE AT THE BOTTOM OF FJORDS [J].
EVERTSZ, CJG ;
JONES, PW ;
MANDELBROT, BB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08) :1889-1901
[9]   Spherical versus prolate spheroidal particles in biosciences: Does the shape make a difference? [J].
Gadzinowski, Mariusz ;
Mickiewicz, Damian ;
Basinska, Teresa .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2021, 32 (10) :3867-3876
[10]  
Garnett J B., 1986, APPL HARMONIC MEASUR, Vvol 8