A Survey on the Hausdorff Dimension of Intersections

被引:2
作者
Mattila, Pertti [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
关键词
Hausdorff dimension; intersection; projection; energy integral; Fourier transform; SETS; CAPACITIES; CONJECTURE;
D O I
10.3390/mca28020049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be Borel subsets of the Euclidean n-space with dim A + dim B > n. This is a survey on the following question: what can we say about the Hausdorff dimension of the intersections A n (g(B) + z) for generic orthogonal transformations g and translations by z?
引用
收藏
页数:12
相关论文
共 34 条
  • [1] CODIMENSION FORMULAE FOR THE INTERSECTION OF FRACTAL SUBSETS OF CANTOR SPACES
    Donoven, Casey
    Falconer, Kenneth
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) : 651 - 663
  • [2] An improved result for Falconer's distance set problem in even dimensions
    Du, Xiumin
    Iosevich, Alex
    Ou, Yumeng
    Wang, Hong
    Zhang, Ruixiang
    [J]. MATHEMATISCHE ANNALEN, 2021, 380 (3-4) : 1215 - 1231
  • [3] WEIGHTED RESTRICTION ESTIMATES AND APPLICATION TO FALCONER DISTANCE SET PROBLEM
    Du, Xiumin
    Guth, Larry
    Ou, Yumeng
    Wang, Hong
    Wilson, Bobby
    Zhang, Ruixiang
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) : 175 - 211
  • [4] Upper bounds for Fourier decay rates of fractal measures
    Du, Xiumin
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (03): : 1318 - 1336
  • [5] Sharp L2 estimates of the Schrodinger maximal function in higher dimensions
    Du, Xiumin
    Zhang, Ruixiang
    [J]. ANNALS OF MATHEMATICS, 2019, 189 (03) : 837 - 861
  • [6] HAUSDORFF DIMENSION AND THE EXCEPTIONAL SET OF PROJECTIONS
    FALCONER, KJ
    [J]. MATHEMATIKA, 1982, 29 (57) : 109 - 115
  • [7] CLASSES OF SETS WITH LARGE INTERSECTION
    FALCONER, KJ
    [J]. MATHEMATIKA, 1985, 32 (64) : 191 - 205
  • [8] Gan SW, 2022, Arxiv, DOI arXiv:2207.13844
  • [9] On Falconer's distance set problem in the plane
    Guth, Larry
    Iosevich, Alex
    Ou, Yumeng
    Wang, Hong
    [J]. INVENTIONES MATHEMATICAE, 2020, 219 (03) : 779 - 830
  • [10] IMPROVED BOUNDS FOR RESTRICTED PROJECTION FAMILIES VIA WEIGHTED FOURIER RESTRICTION
    Harris, Terence L. J.
    [J]. ANALYSIS & PDE, 2022, 15 (07): : 1655 - 1701