Extra-special p-groups as groups of automorphisms

被引:0
作者
De Melo, E. [1 ]
Gomes, M. E. [1 ]
Lima, I [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Automorphisms; p-groups; associated Lie rings; FIXED-POINTS; FINITE;
D O I
10.1080/00927872.2022.2102178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime and E an extra-special p-group of exponent p and order p(2n+1). Suppose that E acts by automorphisms on a finite p'-group G. We prove that if gamma(n)(C-G(a)) is nilpotent for any a is an element of E-#, then gamma(n)(G) is nilpotent. If, for some integer d such that 2(d)<= n, the dth derived group of C-G(a) is nilpotent for any a is an element of E-#, then the dth derived group G((d)) is nilpotent. We also prove similar results for Lie algebras.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 13 条
[1]   Centralizers of coprime automorphisms of finite groups [J].
Acciarri, Cristina ;
Shumyatsky, Pavel .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) :317-324
[2]   Fixed points of coprime operator groups [J].
Acciarri, Cristina ;
Shumyatsky, Pavel .
JOURNAL OF ALGEBRA, 2011, 342 (01) :161-174
[3]   Nilpotent residual and fitting subgroup of fixed points in finite groups [J].
de Melo, Emerson .
JOURNAL OF GROUP THEORY, 2019, 22 (06) :1059-1068
[4]   FINITE GROUPS AND THEIR COPRIME AUTOMORPHISMS [J].
de Melo, Emerson ;
Shumyatsky, Pavel .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) :3755-3760
[5]  
Doerk K., 1992, FINITE SOLUBLE GROUP, DOI DOI 10.1515/9783110870138
[6]  
GLAUBERMAN G, 1976, P LOND MATH SOC, V33, P1
[7]  
Gorenstein D., 1968, Finite Groups
[8]  
Hall P., 1958, Illinois J. Math, V2, P787
[9]  
Khukhro E., 1996, ALGEBR LOGIC, V34, P395, DOI [10.1007/BF00739335, DOI 10.1007/BF00739335]
[10]  
Khukhro EI., 1993, NILPOTENT GROUPS THE, DOI [10.1515/9783110846218, DOI 10.1515/9783110846218]