Enabling large-scale screening of Barrett's esophagus using weakly supervised deep learning in histopathology

被引:7
作者
Bouzid, Kenza [1 ]
Sharma, Harshita [1 ]
Killcoyne, Sarah [2 ]
Castro, Daniel C. [1 ]
Schwaighofer, Anton [1 ]
Ilse, Max [1 ]
Salvatelli, Valentina [1 ]
Oktay, Ozan [1 ]
Murthy, Sumanth [2 ]
Bordeaux, Lucas [2 ]
Moore, Luiza [3 ]
O'Donovan, Maria [2 ,3 ]
Thieme, Anja [1 ]
Nori, Aditya [1 ]
Gehrung, Marcel [2 ]
Alvarez-Valle, Javier [1 ]
机构
[1] Microsoft Hlth Futures, Cambridge, England
[2] Cyted Ltd, Cambridge, England
[3] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Dept Histopathol, Cambridge, England
基金
“创新英国”项目;
关键词
D O I
10.1038/s41467-024-46174-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Timely detection of Barrett's esophagus, the pre-malignant condition of esophageal adenocarcinoma, can improve patient survival rates. The Cytosponge-TFF3 test, a non-endoscopic minimally invasive procedure, has been used for diagnosing intestinal metaplasia in Barrett's. However, it depends on pathologist's assessment of two slides stained with H&E and the immunohistochemical biomarker TFF3. This resource-intensive clinical workflow limits large-scale screening in the at-risk population. To improve screening capacity, we propose a deep learning approach for detecting Barrett's from routinely stained H&E slides. The approach solely relies on diagnostic labels, eliminating the need for expensive localized expert annotations. We train and independently validate our approach on two clinical trial datasets, totaling 1866 patients. We achieve 91.4% and 87.3% AUROCs on discovery and external test datasets for the H&E model, comparable to the TFF3 model. Our proposed semi-automated clinical workflow can reduce pathologists' workload to 48% without sacrificing diagnostic performance, enabling pathologists to prioritize high risk cases. Diagnosis of Barrett's esophagus depends on pathologist assessment of stained slides. Here, the authors utilise a deep learning approach to prioritize potential cases using diagnostic labels in two datasets, with the aim to improve Barrett's screening capacity.
引用
收藏
页数:15
相关论文
共 47 条
[1]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[2]   PREVALENCE OF COLUMNAR-LINED (BARRETT) ESOPHAGUS - COMPARISON OF POPULATION-BASED CLINICAL AND AUTOPSY FINDINGS [J].
CAMERON, AJ ;
ZINSMEISTER, AR ;
BALLARD, DJ ;
CARNEY, JA .
GASTROENTEROLOGY, 1990, 99 (04) :918-922
[3]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[4]  
Cardoso M. J., 2022, CoRR abs/2211.02701
[5]  
Fitzgerald RC, 2020, LANCET, V396, P333, DOI 10.1016/S0140-6736(20)31099-0
[6]   Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis [J].
Fu, Yu ;
Jung, Alexander W. ;
Torne, Ramon Vinas ;
Gonzalez, Santiago ;
Vohringer, Harald ;
Shmatko, Artem ;
Yates, Lucy R. ;
Jimenez-Linan, Mercedes ;
Moore, Luiza ;
Gerstung, Moritz .
NATURE CANCER, 2020, 1 (08) :800-+
[7]   Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal adenocarcinoma using deep learning [J].
Gehrung, Marcel ;
Crispin-Ortuzar, Mireia ;
Berman, Adam G. ;
O'Donovan, Maria ;
Fitzgerald, Rebecca C. ;
Markowetz, Florian .
NATURE MEDICINE, 2021, 27 (05) :833-+
[8]   Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-AI Collaborative Navigation System [J].
Gu, Hongyan ;
Yang, Chunxu ;
Haeri, Mohammad ;
Wang, Jing ;
Tang, Shirley ;
Yan, Wenzhong ;
He, Shujin ;
Williams, Christopher Kazu ;
Magaki, Shino ;
Chen, Xiang 'Anthony' .
PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,
[9]   Improving Workflow Integration with xPath: Design and Evaluation of a Human-AI Diagnosis System in Pathology [J].
Gu, Hongyan ;
Liang, Yuan ;
Xu, Yifan ;
Williams, Christopher Kazu ;
Magaki, Shino ;
Khanlou, Negar ;
Vinters, Harry ;
Chen, Zesheng ;
Ni, Shuo ;
Yang, Chunxu ;
Yan, Wenzhong ;
Zhang, Xinhai Robert ;
Li, Yang ;
Haeri, Mohammad ;
Chen, Xiang Anthony .
ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2023, 30 (02)
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778