Locked Nucleic Acid Oligonucleotides Facilitate RNA•LNA-RNA Triple-Helix Formation and Reduce MALAT1 Levels

被引:1
作者
Shivakumar, Krishna M. [1 ]
Mahendran, Gowthami [1 ]
Brown, Jessica A. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
LNA; MALAT1; MEN beta; METTL16; RNA center dot LNA-RNA triple helix; triple helix; LONG NONCODING RNAS; EXPRESSION; STABILITY; DUPLEXES; METHYLTRANSFERASE; CONFORMATION; METASTASIS; INSIGHTS; ANALOGS; ENA;
D O I
10.3390/ijms25031630
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and multiple endocrine neoplasia-beta (MEN beta) are two long noncoding RNAs upregulated in multiple cancers, marking these RNAs as therapeutic targets. While traditional small-molecule and antisense-based approaches are effective, we report a locked nucleic acid (LNA)-based approach that targets the MALAT1 and MEN beta triple helices, structures comprised of a U-rich internal stem-loop and an A-rich tract. Two LNA oligonucleotides resembling the A-rich tract (i.e., A9GCA4) were examined: an LNA (L15) and a phosphorothioate LNA (PS-L15). L15 binds tighter than PS-L15 to the MALAT1 and MEN beta stem loops, although both L15 and PS-L15 enable RNA center dot LNA-RNA triple-helix formation. Based on UV thermal denaturation assays, both LNAs selectively stabilize the Hoogsteen interface by 5-13 degrees C more than the Watson-Crick interface. Furthermore, we show that L15 and PS-L15 displace the A-rich tract from the MALAT1 and MEN beta stem loop and methyltransferase-like protein 16 (METTL16) from the METTL16-MALAT1 triple-helix complex. Human colorectal carcinoma (HCT116) cells transfected with LNAs have 2-fold less MALAT1 and MEN beta. This LNA-based approach represents a potential therapeutic strategy for the dual targeting of MALAT1 and MEN beta.
引用
收藏
页数:19
相关论文
共 91 条
  • [1] Single-molecule measurements of the persistence length of double- stranded RNA
    Abels, JA
    Moreno-Herrero, F
    van der Heijden, T
    Dekker, C
    Dekker, NH
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (04) : 2737 - 2744
  • [2] Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1
    Abulwerdi, Fardokht A.
    Xu, Wenbo
    Ageeli, Abeer A.
    Yonkunas, Michael J.
    Arun, Gayatri
    Nam, Hyeyeon
    Schneekloth, John S., Jr.
    Dayie, Theodore Kwaku
    Spector, David
    Baird, Nathan
    Le Grice, Stuart F. J.
    [J]. ACS CHEMICAL BIOLOGY, 2019, 14 (02) : 223 - 235
  • [3] Finely tuned conformational dynamics regulate the protective function of the lncRNA MALAT1 triple helix
    Ageeli, Abeer A.
    McGovern-Gooch, Kayleigh R.
    Kaminska, Magdalena M.
    Baird, Nathan J.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (03) : 1468 - 1481
  • [4] Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity
    Amodio, Nicola
    Stamato, Maria Angelica
    Juli, Giada
    Morelli, Eugenio
    Fulciniti, Mariateresa
    Manzoni, Martina
    Taiana, Elisa
    Agnelli, Luca
    Cantafio, Maria Eugenia Gallo
    Romeo, Enrica
    Raimondi, Lavinia
    Caracciolo, Daniele
    Zuccala, Valeria
    Rossi, Marco
    Neri, Antonino
    Munshi, Nikhil C.
    Tagliaferri, Pierosandro
    Tassone, Pierfrancesco
    [J]. LEUKEMIA, 2018, 32 (09) : 1948 - 1957
  • [5] A toolkit for the identification of NEAT1_2/paraspeckle modulators
    An, Haiyan
    Elvers, Karen T.
    Gillespie, Jason A.
    Jones, Kimberley
    Atack, John R.
    Grubisha, Olivera
    Shelkovnikova, Tatyana A.
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (20) : E119
  • [6] Expression Analysis of MALAT1, GAS5, SRA, and NEAT1 lncRNAs in Breast Cancer Tissues from Young Women and Women over 45 Years of Age
    Arshi, Asghar
    Sharifi, Fatemeh Sadat
    Ghahfarokhi, Milad Khorramian
    Faghih, Zahra
    Doosti, Abbas
    Ostovari, Sara
    Maymand, Elham Mahmoudi
    Seno, Mohammad Mahdi Ghahramani
    [J]. MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 12 : 751 - 757
  • [7] Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss
    Arun, Gayatri
    Diermeier, Sarah
    Akerman, Martin
    Chang, Kung-Chi
    Wilkinson, J. Erby
    Hearn, Stephen
    Kim, Youngsoo
    MacLeod, A. Robert
    Krainer, Adrian R.
    Norton, Larry
    Brogi, Edi
    Egeblad, Mikala
    Spector, David L.
    [J]. GENES & DEVELOPMENT, 2016, 30 (01) : 34 - 51
  • [8] Recognizing the power of machine learning and other computational methods to accelerate progress in small molecule targeting of RNA
    Bagnolini, Greta
    Luu, TinTin B.
    Hargrove, Amanda E.
    [J]. RNA, 2023, 29 (04) : 473 - 488
  • [9] Flexibility of nucleic acids: From DNA to RNA
    Bao, Lei
    Zhang, Xi
    Jin, Lei
    Tan, Zhi-Jie
    [J]. CHINESE PHYSICS B, 2016, 25 (01)
  • [10] Emerging role of non-coding RNA in health and disease
    Bhatti, Gurjit Kaur
    Khullar, Naina
    Sidhu, Inderpal Singh
    Navik, Uma Shanker
    Reddy, Arubala P.
    Reddy, P. Hemachandra
    Bhatti, Jasvinder Singh
    [J]. METABOLIC BRAIN DISEASE, 2021, 36 (06) : 1119 - 1134