Berezin number and Berezin norm inequalities for operator matrices

被引:9
作者
Bhunia, Pintu [1 ]
Sen, Anirban [2 ]
Barik, Somdatta [2 ]
Paul, Kallol [2 ,3 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru, India
[2] Jadavpur Univ, Dept Math, Kolkata, India
[3] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
Berezin norm; Berezin number; numerical radius; operator norm; reproducing kernel Hilbert space; NUMERICAL RADIUS INEQUALITIES; SYMBOL; BOUNDS;
D O I
10.1080/03081087.2023.2299388
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish new upper bounds for the Berezin number andBerezin norm of operator matrices, which are refinements of existingbounds. Among other bounds, we prove that ifA=[Aij]isannxnoperator matrix withAij is an element of B(H)fori,j=1, 2,...,n, then & Vert;A & Vert;ber <=parallel to parallel to[& Vert;Aij & Vert;ber]parallel to parallel to andber(A)<= w([aij]),whereaii=ber(Aii),aij=parallel to parallel to|Aij|+|A & lowast;ji|parallel to parallel to 1/2ber parallel to parallel to|Aji|+|A & lowast;ij|parallel to parallel to 1/2berifij. We also provideexamples which illustrate these bounds for some concrete operatorsacting on the Hardy-Hilbert space
引用
收藏
页码:2749 / 2768
页数:20
相关论文
共 43 条
[1]   Numerical radius inequalities for n x n operator matrices [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 :18-26
[2]   SOME EXTENSIONS OF BEREZIN NUMBER INEQUALITIES ON OPERATORS [J].
Bakherad, Mojtaba ;
Hajmohamadi, Monire ;
Lashkaripour, Rahmatollah ;
Sahoo, Satyajit .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :1941-1951
[3]   New estimations for the Berezin number inequality [J].
Bakherad, Mojtaba ;
Yamanci, Ulas .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[4]   SOME BEREZIN NUMBER INEQUALITIES FOR OPERATOR MATRICES [J].
Bakherad, Mojtaba .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (04) :997-1009
[5]   Numerical radius inequalities for operator matrices [J].
Bani-Domi, Wathiq ;
Kittaneh, Fuad .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) :421-427
[6]  
Berezin F. A., 1972, Izv. Akad. Nauk SSSR Ser. Mat., V6, P1117, DOI 10.1070/im1972v006n05abeh001913
[7]  
BEREZIN FA, 1974, MATH USSR IZV, V8, P1109
[8]  
Bhunia, 2023, ARXIV
[9]   On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities [J].
Bhunia, P. ;
Gurdal, M. ;
Paul, K. ;
Sen, A. ;
Tapdigoglu, R. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (09) :970-986
[10]  
Bhunia P., 2022, Infosys Science Foundation Series in Mathematical Sciences, DOI DOI 10.1007/978-3-031-13670-2