Simultaneous confidence region of an embedded one-dimensional curve in multi-dimensional space

被引:0
|
作者
Yamazoe, Hiroya [1 ]
Naito, Kanta [2 ]
机构
[1] Chiba Univ, Grad Sch Sci & Engn, Chiba, Japan
[2] Chiba Univ, Dept Math & Informat, Chiba, Japan
基金
日本学术振兴会;
关键词
Asymptotics; Dendrite data; Embedded one-dimensional curve; Local linear estimator; Simultaneous confidence region; STANDARD; BANDS;
D O I
10.1016/j.csda.2023.107891
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper focuses on the simultaneous confidence region of a one-dimensional curve embedded in multi-dimensional space. Local linear regression is applied component-wise to each variable in multi-dimensional data, which yields an estimator of the one-dimensional curve. A simultaneous confidence region of the curve is proposed based on this estimator and theoretical results for the estimator and the region are developed under some reasonable assumptions. Practically efficient algorithms to determine the thickness of the region are also addressed. The effectiveness of the region is investigated through simulation studies and applications to artificial and real datasets, which reveal that the proposed simultaneous confidence region works well.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] CONSERVATISM - ONE-DIMENSIONAL OR MULTI-DIMENSIONAL
    SIDDIQI, JA
    JANSEN, R
    HAARA, A
    PSYCHOLOGISCHE BEITRAGE, 1971, 13 (01): : 26 - 37
  • [2] One-dimensional and multi-dimensional substring selectivity estimation
    Jagadish, HV
    Kapitskaia, O
    Ng, RT
    Srivastava, D
    VLDB JOURNAL, 2000, 9 (03): : 214 - 230
  • [3] One-dimensional and multi-dimensional substring selectivity estimation
    H.V. Jagadish
    Olga Kapitskaia
    Raymond T. Ng
    Divesh Srivastava
    The VLDB Journal, 2000, 9 : 214 - 230
  • [4] REGULARITY OF SOLUTIONS TO ONE-DIMENSIONAL AND MULTI-DIMENSIONAL PROBLEMS IN THE CALCULUS OF VARIATIONS
    Clarke, F. H.
    GEOMETRIC CONTROL AND NONSMOOTH ANALYSIS, 2008, 76 : 151 - 163
  • [6] ON LIMIT-CYCLES IN ONE-DIMENSIONAL AND MULTI-DIMENSIONAL DIGITAL-FILTERS
    RANK, K
    LEHNER, D
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1339 - 1342
  • [7] Comparison of one-dimensional and multi-dimensional models in stability analysis of turning operations
    Ozlu, Emre
    Budak, Erhan
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2007, 47 (12-13): : 1875 - 1883
  • [8] Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices
    Maczewsky, Lukas J.
    Wang, Kai
    Dovgiy, Alexander A.
    Miroshnichenko, Andrey E.
    Moroz, Alexander
    Ehrhardt, Max
    Heinrich, Matthias
    Christodoulides, Demetrios N.
    Szameit, Alexander
    Sukhorukov, Andrey A.
    NATURE PHOTONICS, 2020, 14 (02) : 76 - +
  • [9] Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices
    Lukas J. Maczewsky
    Kai Wang
    Alexander A. Dovgiy
    Andrey E. Miroshnichenko
    Alexander Moroz
    Max Ehrhardt
    Matthias Heinrich
    Demetrios N. Christodoulides
    Alexander Szameit
    Andrey A. Sukhorukov
    Nature Photonics, 2020, 14 : 76 - 81
  • [10] Wavelet method for solving one-dimensional and multi-dimensional nonlinear evolution equations
    Dept. of Mathematics, Harbin Institute of Technology, Harbin 150001, China
    不详
    Harbin Gongye Daxue Xuebao, 2009, 11 (99-102): : 99 - 102