Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters

被引:7
作者
Hansen, Cooper K. [1 ]
Whelan, Gary F. [2 ]
Hochhalter, Jacob D. [1 ]
机构
[1] Univ Utah, 1495 E 100 S, Salt Lake City, UT 84112 USA
[2] Questek Innovat LLC, 1820 Ridge Ave, Evanston, IL 60201 USA
关键词
Machine learning; Microstructure; FIP; Crack initiation; Fatigue; POLYCRYSTALLINE MICRO STRUCTURES; AUTOMATED-ANALYSIS; CRACK INITIATION; SIMULATION; FRAMEWORK; SLIP;
D O I
10.1016/j.ijfatigue.2023.108019
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fatigue indicator parameters (FIPs) are typically computed using crystal plasticity finite element modeling (CPFEM) and used to predict microscale crack initiation. While informative, computing FIPs in this manner can limit their application in engineering use cases due to the computational demand of CPFEM. To address this limitation, an interpretable machine learning approach is developed and used to model FIPs in additive manufactured IN625 single-phase microstructures. Genetic programming based symbolic regression is used to evolve inherently interpretable expressions of FIPs from microstructure features. Once developed, these FIP models act as an efficient surrogate for CPFEM and, due to their symbolic representation, can be readily combined with engineering workflows.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT-OF-PHASE LOADING
    FATEMI, A
    SOCIE, DF
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1988, 11 (03) : 149 - 165
  • [12] A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization
    Groeber, Michael
    Ghosh, Somnath
    Uchic, Michael D.
    Dimiduk, Dennis M.
    [J]. ACTA MATERIALIA, 2008, 56 (06) : 1257 - 1273
  • [13] A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 2: Synthetic structure generation
    Groeber, Michael
    Ghosh, Somnath
    Uchic, Michael D.
    Dimiduk, Dennis M.
    [J]. ACTA MATERIALIA, 2008, 56 (06) : 1274 - 1287
  • [14] DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D
    Groeber M.A.
    Jackson M.A.
    [J]. Integrating Materials and Manufacturing Innovation, 2014, 3 (01) : 56 - 72
  • [15] Hennessey CD, 2015, Ph.D. thesis
  • [16] A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651
    Hochhalter, J. D.
    Littlewood, D. J.
    Christ, R. J., Jr.
    Veilleux, M. G.
    Bozek, J. E.
    Ingraffea, A. R.
    Maniatty, A. M.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2010, 18 (04)
  • [17] A Data Analytics Approach to Discovering Unique Microstructural Configurations Susceptible to Fatigue
    Jha, S. K.
    Brockman, R. A.
    Hoffman, R. M.
    Sinha, V.
    Pilchak, A. L.
    Porter, W. J., III
    Buchanan, D. J.
    Larsen, J. M.
    John, R.
    [J]. JOM, 2018, 70 (07) : 1147 - 1153
  • [18] Ensemble representation learning: an analysis of fitness and survival for wrapper-based genetic programming methods
    La Cava, William
    Moore, Jason H.
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 961 - 968
  • [19] Crystal plasticity finite element modeling of grain size and morphology effects on yield strength and extreme value fatigue response
    Lakshmanan, Aaditya
    Yaghoobi, Mohammadreza
    Stopka, Krzysztof S.
    Sundararaghavan, Veera
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 19 : 3337 - 3354
  • [20] ELASTIC-PLASTIC DEFORMATION AT FINITE STRAINS
    LEE, EH
    [J]. JOURNAL OF APPLIED MECHANICS, 1969, 36 (01): : 1 - &