Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters

被引:7
作者
Hansen, Cooper K. [1 ]
Whelan, Gary F. [2 ]
Hochhalter, Jacob D. [1 ]
机构
[1] Univ Utah, 1495 E 100 S, Salt Lake City, UT 84112 USA
[2] Questek Innovat LLC, 1820 Ridge Ave, Evanston, IL 60201 USA
关键词
Machine learning; Microstructure; FIP; Crack initiation; Fatigue; POLYCRYSTALLINE MICRO STRUCTURES; AUTOMATED-ANALYSIS; CRACK INITIATION; SIMULATION; FRAMEWORK; SLIP;
D O I
10.1016/j.ijfatigue.2023.108019
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fatigue indicator parameters (FIPs) are typically computed using crystal plasticity finite element modeling (CPFEM) and used to predict microscale crack initiation. While informative, computing FIPs in this manner can limit their application in engineering use cases due to the computational demand of CPFEM. To address this limitation, an interpretable machine learning approach is developed and used to model FIPs in additive manufactured IN625 single-phase microstructures. Genetic programming based symbolic regression is used to evolve inherently interpretable expressions of FIPs from microstructure features. Once developed, these FIP models act as an efficient surrogate for CPFEM and, due to their symbolic representation, can be readily combined with engineering workflows.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cube slip in near-[111] oriented specimens of a single-crystal nickel-base superalloy
    Bettge, D
    Österle, W
    [J]. SCRIPTA MATERIALIA, 1999, 40 (04) : 389 - 395
  • [2] Grain boundaries and interfaces in slip transfer
    Bieler, T. R.
    Eisenlohr, P.
    Zhang, C.
    Phukan, H. J.
    Crimp, M. A.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (04) : 212 - 226
  • [3] CONTINUOUS DISTRIBUTIONS OF DISLOCATIONS - A NEW APPLICATION OF THE METHODS OF NON-RIEMANNIAN GEOMETRY
    BILBY, BA
    BULLOUGH, R
    SMITH, E
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 231 (1185): : 263 - 273
  • [4] Bomarito G, 2022, Bingo
  • [5] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    [J]. COMPUTERS & STRUCTURES, 2021, 252
  • [6] 3D reconstruction of microstructure in a commercial purity aluminum
    Brahme, A.
    Alvi, M. H.
    Saylor, D.
    Fridy, J.
    Rollett, A. D.
    [J]. SCRIPTA MATERIALIA, 2006, 55 (01) : 75 - 80
  • [7] Castelluccio GM, 2012, Ph.D. thesis, P278
  • [8] Recent developments in assessing microstructure-sensitive early stage fatigue of polycrystals
    Castelluccio, Gustavo M.
    Musinski, William D.
    McDowell, David L.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (04) : 180 - 187
  • [9] Effect of annealing twins on crack initiation under high cycle fatigue conditions
    Castelluccio, Gustavo M.
    McDowell, David L.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2013, 48 (06) : 2376 - 2387
  • [10] Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations
    Eghtesad, Adnan
    Luo, Qixiang
    Shang, Shun -Li
    Lebensohn, Ricardo A.
    Knezevic, Marko
    Liu, Zi-Kui
    Beese, Allison M.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 166