Comprehensive performance analysis and structural improvement of latent heat thermal energy storage (LHTES) unit using a novel parallel enthalpy-based lattice Boltzmann model

被引:11
作者
Chen, Dongyu [1 ]
Riaz, Amir [1 ]
Aute, Vikrant C. [1 ]
Radermacher, Reinhard [1 ]
机构
[1] Univ Maryland, Ctr Environm Energy Engn CEEE, Dept Mech Engn, 4164 Glenn Martin Hall Bldg, College Pk, MD 20742 USA
关键词
Thermal energy storage; Phase change material; Lattice Boltzmann method; Convective heat transfer; Porous media; PHASE-CHANGE MATERIALS; NATURAL-CONVECTION; PCM; SYSTEM; EVOLUTION;
D O I
10.1016/j.est.2023.108902
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Latent heat thermal energy storage (LHTES) utilizing phase change material (PCM) is one of the critical enablers in developing sustainable and low-carbon energy systems. To fill the knowledge gap, this paper presents an enthalpy-based solid-liquid model through the lattice Boltzmann method (LBM) with a multi-relaxation-time (MRT) approach, aiming to simulate convective phase change in LHTES units with and without porous media in Cartesian or axisymmetric domains. To improve accuracy and efficiency, the model integrates a differential scanning calorimetry (DSC) correlated equation for enthalpy modeling, couples with a 1D heat-transfer-fluid (HTF) model for boundary treatment of HTF side, and employs a parallel LBM scheme for efficient parametric studies. The validation demonstrates the model's success in predicting PCM phase change, with errors below 10%. A comprehensive numerical analysis is then conducted to quantitatively evaluate the effect of convection on PCM melting. Novel metrics, such as acceleration rates (ac) of PCM melting and threshold Rayleigh numbers (Radc) at various aspect ratios, are introduced. Furthermore, PCM melting in the porous cylindrical unit is explored. Findings reveal up to 86% acceleration in melting compared to pure PCM at 80% energy storage, and the porous media with porosity above 0.9 is recommended for thermal enhancement. Moreover, this paper analyzes the negative effect of uneven temperature distributions caused by convection on LHTES unit efficiency. A modified LHTES unit geometry is proposed to offset this negative effect, and the study demonstrates successful mitigation of uneven temperature distributions, achieving up to 57 % acceleration in PCM melting.
引用
收藏
页数:16
相关论文
共 54 条
[41]   Coupled EnergyPlus and CFD analysis of PCM for thermal management of buildings [J].
Pandey, Brijesh ;
Banerjee, Rangan ;
Sharma, Atul .
ENERGY AND BUILDINGS, 2021, 231
[42]   Numerical study on melting of phase change material in an enclosure subject to Neumann boundary condition in the presence of Rayleigh-Benard convection [J].
Parsazadeh, Mohammad ;
Malik, Mehtab ;
Duan, Xili ;
McDonald, Andre .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
[43]   Heat transfer characteristics of thermal energy storage system using PCM capsules: A review [J].
Regin, A. Felix ;
Solanki, S. C. ;
Saini, J. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (09) :2438-2458
[44]   A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale [J].
Ren, Qinlong ;
Meng, Fanlong ;
Guo, Penghua .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 121 :1214-1228
[45]   Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit [J].
Tao, Y. B. ;
Liu, Y. K. ;
He, Ya-Ling .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 :99-107
[46]   Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model [J].
Tay, N. H. S. ;
Belusko, M. ;
Liu, M. ;
Bruno, F. .
APPLIED ENERGY, 2015, 137 :738-747
[47]   PCM thermal storage in buildings: A state of art [J].
Tyagi, Vineet Veer ;
Buddhi, D. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (06) :1146-1166
[48]   Technologies and perspectives for achieving carbon neutrality [J].
Wang, Fang ;
Harindintwali, Jean Damascene ;
Yuan, Zhizhang ;
Wang, Min ;
Wang, Faming ;
Li, Sheng ;
Yin, Zhigang ;
Huang, Lei ;
Fu, Yuhao ;
Li, Lei ;
Chang, Scott X. ;
Zhang, Linjuan ;
Rinklebe, Jorg ;
Yuan, Zuoqiang ;
Zhu, Qinggong ;
Xiang, Leilei ;
Tsang, Daniel C. W. ;
Xu, Liang ;
Jiang, Xin ;
Liu, Jihua ;
Wei, Ning ;
Kastner, Matthias ;
Zou, Yang ;
Ok, Yong Sik ;
Shen, Jianlin ;
Peng, Dailiang ;
Zhang, Wei ;
Barcelo, Damia ;
Zhou, Yongjin ;
Bai, Zhaohai ;
Li, Boqiang ;
Zhang, Bin ;
Wei, Ke ;
Cao, Hujun ;
Tan, Zhiliang ;
Zhao, Liu-bin ;
He, Xiao ;
Zheng, Jinxing ;
Bolan, Nanthi ;
Liu, Xiaohong ;
Huang, Changping ;
Dietmann, Sabine ;
Luo, Ming ;
Sun, Nannan ;
Gong, Jirui ;
Gong, Yulie ;
Brahushi, Ferdi ;
Zhang, Tangtang ;
Xiao, Cunde ;
Li, Xianfeng .
INNOVATION, 2021, 2 (04)
[49]   Multi-relaxation-time lattice Boltzmann model for axisymmetric flows [J].
Wang, Liang ;
Guo, Zhaoli ;
Zheng, Chuguang .
COMPUTERS & FLUIDS, 2010, 39 (09) :1542-1548
[50]   Cold storage condensation heat recovery system with a novel composite phase change material [J].
Xia, Mingzhu ;
Yuan, Yanping ;
Zhao, Xudong ;
Cao, Xiaoling ;
Tang, Zhonghua .
APPLIED ENERGY, 2016, 175 :259-268