Strengthened Circle and Popov Criteria for the Stability Analysis of Feedback Systems With ReLU Neural Networks

被引:7
作者
Richardson, Carl R. R. [1 ]
Turner, Matthew C. C. [1 ]
Gunn, Steve R. R. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hamps, England
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
LMIs; Lyapunov methods; neural networks; robust control; stability of nonlinear systems;
D O I
10.1109/LCSYS.2023.3287494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter considers the stability analysis of a Lurie system with a static repeated ReLU (rectified linear unit) nonlinearity. Properties of the ReLU function are leveraged to derive new tailored quadratic constraints (QCs) which are satisfied by the repeated ReLU. These QCs are used to strengthen the Circle and Popov Criteria for this specialised Lurie system. It is shown that the criteria can be cast as a set of linear matrix inequalities (LMIs) with less restrictive conditions on the matrix variables. Many systems involving a neural network (NN) with ReLU activations are important instances of this specialised Lurie system; for example, a continuous time recurrent neural network (RNN) or the interconnection of a linear system with a feedforward NN. Numerical examples show the strengthened criteria strike an appealing balance between reduced conservatism and complexity, compared to existing criteria.
引用
收藏
页码:2635 / 2640
页数:6
相关论文
共 35 条
  • [1] Andersen ED., 2000, HIGH PERFORMANCE OPT, P197, DOI DOI 10.1007/978-1-4757-3216-0_8
  • [2] [Anonymous], 2007, ROBUST CONTROL TOOLB
  • [3] Dynamic output-feedback control of continuous-time Lur'e systems using Zames-Falb multipliers by means of an LMI-based algorithm
    Bertolin, Ariadne L. J.
    Oliveira, Ricardo C. L. F.
    Valmorbida, Giorgio
    Peres, Pedro L. D.
    [J]. IFAC PAPERSONLINE, 2022, 55 (25): : 109 - 114
  • [4] Boyd S., 1994, LINEAR MATRIX INEQUA
  • [5] Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches
    Carrasco, Joaquin
    Turner, Matthew C.
    Heath, William P.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2016, 28 : 1 - 19
  • [6] Magnetic control of tokamak plasmas through deep reinforcement learning
    Degrave, Jonas
    Felici, Federico
    Buchli, Jonas
    Neunert, Michael
    Tracey, Brendan
    Carpanese, Francesco
    Ewalds, Timo
    Hafner, Roland
    Abdolmaleki, Abbas
    de las Casas, Diego
    Donner, Craig
    Fritz, Leslie
    Galperti, Cristian
    Huber, Andrea
    Keeling, James
    Tsimpoukelli, Maria
    Kay, Jackie
    Merle, Antoine
    Moret, Jean-Marc
    Noury, Seb
    Pesamosca, Federico
    Pfau, David
    Sauter, Olivier
    Sommariva, Cristian
    Coda, Stefano
    Duval, Basil
    Fasoli, Ambrogio
    Kohli, Pushmeet
    Kavukcuoglu, Koray
    Hassabis, Demis
    Riedmiller, Martin
    [J]. NATURE, 2022, 602 (7897) : 414 - +
  • [7] Aizerman Conjectures for a Class of Multivariate Positive Systems
    Drummond, Ross
    Guiver, Chris
    Turner, Matthew C.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 5073 - 5080
  • [8] Generalized Lyapunov Functions for Discrete-Time Lurie Systems With Slope-Restricted Nonlinearities
    Drummond, Ross
    Valmorbida, Giorgio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (10) : 5966 - 5976
  • [9] Reduced-Order Neural Network Synthesis With Robustness Guarantees
    Drummond, Ross
    Turner, Matthew C.
    Duncan, Stephen R.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 1182 - 1191
  • [10] Activation functions in deep learning: A comprehensive survey and benchmark
    Dubey, Shiv Ram
    Singh, Satish Kumar
    Chaudhuri, Bidyut Baran
    [J]. NEUROCOMPUTING, 2022, 503 : 92 - 108