On two notions of fuzzy topological entropy

被引:3
作者
Canovas, Jose S. [1 ]
Kupka, Jiri [2 ]
机构
[1] Tech Univ Cartagena, Dept Appl Math & Stat, C-Doctor Flemming Sn 30-202, Cartagena, Spain
[2] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, CE IT4I, 30 Dubna 22, Ostrava 1, Czech Republic
关键词
SPACE;
D O I
10.1016/j.fss.2022.04.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the notion of fuzzy topological entropy when different definitions of fuzzy compactness are considered. We prove that the recent definitions by Tok (2005) [23] and by Uzzal Afsan and Basu (2011) [24] are not the most appropriate since they always display zero entropy. Furthermore, we give a simple proof of the bridge result, which states that topological entropy agrees with fuzzy topological entropy when it is defined by using Lowen's definition of compactness. Consequently, many natural properties of the fuzzy topological entropy (such as monotonicity) are obtained as direct corollaries. The particular case of interval maps is also briefly discussed.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 28 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   WEAKLY FUZZY TOPOLOGICAL ENTROPY [J].
Afsan, B. M. Uzzal .
MATHEMATICA BOHEMICA, 2022, 147 (02) :221-236
[3]   Fuzzy topological entropy of fuzzy continuous functions on fuzzy topological spaces [J].
Afsan, B. M. Uzzal ;
Basu, C. K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (12) :2030-2033
[4]  
Akin E, 2018, Arxiv, DOI arXiv:1802.01905
[5]  
Alseda J., 2000, COMBINATORIAL DYNAMI
[6]   The topology and dynamics of the hyperspaces of normal fuzzy sets and their inverse limit spaces [J].
Boronski, J. P. ;
Kupka, J. .
FUZZY SETS AND SYSTEMS, 2017, 321 :90-100
[8]   Topological entropy of fuzzified dynamical systems [J].
Canovas, J. S. ;
Kupka, J. .
FUZZY SETS AND SYSTEMS, 2011, 165 (01) :37-49
[9]  
Canovas J.S, 2019, TOPOL ALGEBRA APPL, V7, P29
[10]   On the topological entropy on the space of fuzzy numbers [J].
Canovas, Jose S. ;
Kupka, Jiri .
FUZZY SETS AND SYSTEMS, 2014, 257 :132-145