ViLoN-a multi-layer network approach to data integration demonstrated for patient stratification

被引:1
作者
Kandula, Maciej M. [1 ,2 ]
Aldoshin, Alexander D. [1 ]
Singh, Swati [1 ,3 ]
Kolaczyk, Eric D. [4 ]
Kreil, David P. [1 ]
机构
[1] Boku Univ Vienna, Inst Mol Biotechnol, Vienna, Austria
[2] Janssen Pharmaceut NV, Beerse, Belgium
[3] Indian Inst Technol Kanpur, Dept Biol Sci & Bioengn, Kanpur, India
[4] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
COMPARING CLUSTERINGS; CANCER; CLASSIFICATION; SURVIVAL; BREAST; MODEL; ACCUMULATION; PREDICTION; REVEALS; HEALTH;
D O I
10.1093/nar/gkac988
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With more and more data being collected, modern network representations exploit the complementary nature of different data sources as well as similarities across patients. We here introduce the Variation of information fused Layers of Networks algorithm (ViLoN), a novel network-based approach for the integration of multiple molecular profiles. As a key innovation, it directly incorporates prior functional knowledge (KEGG, GO). In the constructed network of patients, patients are represented by networks of pathways, comprising genes that are linked by common functions and joint regulation in the disease. Patient stratification remains a key challenge both in the clinic and for research on disease mechanisms and treatments. We thus validated ViLoN for patient stratification on multiple data type combinations (gene expression, methylation, copy number), showing substantial improvements and consistently competitive performance for all. Notably, the incorporation of prior functional knowledge was critical for good results in the smaller cohorts (rectum adenocarcinoma: 90, esophageal carcinoma: 180), where alternative methods failed.
引用
收藏
页码:E6 / E6
页数:14
相关论文
共 74 条
  • [11] A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    Bolstad, BM
    Irizarry, RA
    Åstrand, M
    Speed, TP
    [J]. BIOINFORMATICS, 2003, 19 (02) : 185 - 193
  • [12] Toward better benchmarking: challenge-based methods assessment in cancer genomics
    Boutros, Paul C.
    Margolin, Adam A.
    Stuart, Joshua M.
    Califano, Andrea
    Stolovitzky, Gustavo
    [J]. GENOME BIOLOGY, 2014, 15 (09): : 462
  • [13] The Gene Ontology Resource: 20 years and still GOing strong
    Carbon, S.
    Douglass, E.
    Dunn, N.
    Good, B.
    Harris, N. L.
    Lewis, S. E.
    Mungall, C. J.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Hartline, E.
    Fey, P.
    Thomas, P. D.
    Albou, L. P.
    Ebert, D.
    Kesling, M. J.
    Mi, H.
    Muruganujian, A.
    Huang, X.
    Poudel, S.
    Mushayahama, T.
    Hu, J. C.
    LaBonte, S. A.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Fexova, S.
    Garapati, P.
    Jones, T. E. M.
    Marygold, S. J.
    Millburn, G. H.
    Rey, A. J.
    Trovisco, V.
    dos Santos, G.
    Emmert, D. B.
    Falls, K.
    Zhou, P.
    Goodman, J. L.
    Strelets, V. B.
    Thurmond, J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Acencio, M. L.
    Kuiper, M.
    Laegreid, A.
    Logie, C.
    Lovering, R. C.
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D330 - D338
  • [14] Age-dependent accumulation of genomic aberrations and deregulation of cell cycle and telomerase genes in metastatic neuroblastoma
    Coco, Simona
    Theissen, Jessica
    Scaruffi, Paola
    Stigliani, Sara
    Moretti, Stefano
    Oberthuer, Andre
    Valdora, Francesca
    Fischer, Matthias
    Gallo, Fabio
    Hero, Barbara
    Bonassi, Stefano
    Berthold, Frank
    Tonini, Gian Paolo
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2012, 131 (07) : 1591 - 1600
  • [15] The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report
    Cohn, Susan L.
    Pearson, Andrew D. J.
    London, Wendy B.
    Monclair, Tom
    Ambros, Peter F.
    Brodeur, Garrett M.
    Faldum, Andreas
    Hero, Barbara
    Iehara, Tomoko
    Machin, David
    Mosseri, Veronique
    Simon, Thorsten
    Garaventa, Alberto
    Castel, Victoria
    Matthay, Katherine K.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (02) : 289 - 297
  • [16] Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood
    Come, Etienne
    Latouche, Pierre
    [J]. STATISTICAL MODELLING, 2015, 15 (06) : 564 - 589
  • [17] Csardi G, 2006, INT J COMPLEX SYST, V18, P1695, DOI DOI 10.3724/SP.J.1087.2009.02191
  • [18] The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    Curtis, Christina
    Shah, Sohrab P.
    Chin, Suet-Feung
    Turashvili, Gulisa
    Rueda, Oscar M.
    Dunning, Mark J.
    Speed, Doug
    Lynch, Andy G.
    Samarajiwa, Shamith
    Yuan, Yinyin
    Graef, Stefan
    Ha, Gavin
    Haffari, Gholamreza
    Bashashati, Ali
    Russell, Roslin
    McKinney, Steven
    Langerod, Anita
    Green, Andrew
    Provenzano, Elena
    Wishart, Gordon
    Pinder, Sarah
    Watson, Peter
    Markowetz, Florian
    Murphy, Leigh
    Ellis, Ian
    Purushotham, Arnie
    Borresen-Dale, Anne-Lise
    Brenton, James D.
    Tavare, Simon
    Caldas, Carlos
    Aparicio, Samuel
    [J]. NATURE, 2012, 486 (7403) : 346 - 352
  • [19] Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data
    EL-Manzalawy, Yasser
    Hsieh, Tsung-Yu
    Shivakumar, Manu
    Kim, Dokyoon
    Honavar, Vasant
    [J]. BMC MEDICAL GENOMICS, 2018, 11
  • [20] Biologically informed deep neural network for prostate cancer discovery
    Elmarakeby, Haitham A.
    Hwang, Justin
    Arafeh, Rand
    Crowdis, Jett
    Gang, Sydney
    Liu, David
    AlDubayan, Saud H.
    Salari, Keyan
    Kregel, Steven
    Richter, Camden
    Arnoff, Taylor E.
    Park, Jihye
    Hahn, William C.
    M. Van Allen, Eliezer
    [J]. NATURE, 2021, 598 (7880) : 348 - +