ViLoN-a multi-layer network approach to data integration demonstrated for patient stratification

被引:2
作者
Kandula, Maciej M. [1 ,2 ]
Aldoshin, Alexander D. [1 ]
Singh, Swati [1 ,3 ]
Kolaczyk, Eric D. [4 ]
Kreil, David P. [1 ]
机构
[1] Boku Univ Vienna, Inst Mol Biotechnol, Vienna, Austria
[2] Janssen Pharmaceut NV, Beerse, Belgium
[3] Indian Inst Technol Kanpur, Dept Biol Sci & Bioengn, Kanpur, India
[4] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
COMPARING CLUSTERINGS; CANCER; CLASSIFICATION; SURVIVAL; BREAST; MODEL; ACCUMULATION; PREDICTION; REVEALS; HEALTH;
D O I
10.1093/nar/gkac988
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With more and more data being collected, modern network representations exploit the complementary nature of different data sources as well as similarities across patients. We here introduce the Variation of information fused Layers of Networks algorithm (ViLoN), a novel network-based approach for the integration of multiple molecular profiles. As a key innovation, it directly incorporates prior functional knowledge (KEGG, GO). In the constructed network of patients, patients are represented by networks of pathways, comprising genes that are linked by common functions and joint regulation in the disease. Patient stratification remains a key challenge both in the clinic and for research on disease mechanisms and treatments. We thus validated ViLoN for patient stratification on multiple data type combinations (gene expression, methylation, copy number), showing substantial improvements and consistently competitive performance for all. Notably, the incorporation of prior functional knowledge was critical for good results in the smaller cohorts (rectum adenocarcinoma: 90, esophageal carcinoma: 180), where alternative methods failed.
引用
收藏
页码:E6 / E6
页数:14
相关论文
共 74 条
[11]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[12]   Toward better benchmarking: challenge-based methods assessment in cancer genomics [J].
Boutros, Paul C. ;
Margolin, Adam A. ;
Stuart, Joshua M. ;
Califano, Andrea ;
Stolovitzky, Gustavo .
GENOME BIOLOGY, 2014, 15 (09) :462
[13]   The Cancer Genome Atlas Pan-Cancer analysis project [J].
Weinstein, John N. ;
Collisson, Eric A. ;
Mills, Gordon B. ;
Shaw, Kenna R. Mills ;
Ozenberger, Brad A. ;
Ellrott, Kyle ;
Shmulevich, Ilya ;
Sander, Chris ;
Stuart, Joshua M. .
NATURE GENETICS, 2013, 45 (10) :1113-1120
[14]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338
[15]   Age-dependent accumulation of genomic aberrations and deregulation of cell cycle and telomerase genes in metastatic neuroblastoma [J].
Coco, Simona ;
Theissen, Jessica ;
Scaruffi, Paola ;
Stigliani, Sara ;
Moretti, Stefano ;
Oberthuer, Andre ;
Valdora, Francesca ;
Fischer, Matthias ;
Gallo, Fabio ;
Hero, Barbara ;
Bonassi, Stefano ;
Berthold, Frank ;
Tonini, Gian Paolo .
INTERNATIONAL JOURNAL OF CANCER, 2012, 131 (07) :1591-1600
[16]   The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report [J].
Cohn, Susan L. ;
Pearson, Andrew D. J. ;
London, Wendy B. ;
Monclair, Tom ;
Ambros, Peter F. ;
Brodeur, Garrett M. ;
Faldum, Andreas ;
Hero, Barbara ;
Iehara, Tomoko ;
Machin, David ;
Mosseri, Veronique ;
Simon, Thorsten ;
Garaventa, Alberto ;
Castel, Victoria ;
Matthay, Katherine K. .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (02) :289-297
[17]   Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood [J].
Come, Etienne ;
Latouche, Pierre .
STATISTICAL MODELLING, 2015, 15 (06) :564-589
[18]  
Csardi G., 2006, J COMPLEX SYS, V1695, P1
[19]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[20]   Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data [J].
EL-Manzalawy, Yasser ;
Hsieh, Tsung-Yu ;
Shivakumar, Manu ;
Kim, Dokyoon ;
Honavar, Vasant .
BMC MEDICAL GENOMICS, 2018, 11