Compressively strained epitaxial Ge layers for quantum computing applications

被引:0
作者
Shimura, Yosuke [1 ]
Godfrin, Clement [1 ]
Hikavyy, Andriy [1 ,5 ]
Li, Roy [1 ]
Aguilera, Juan [2 ]
Katsaros, Georgios [2 ]
Favia, Paola [1 ]
Han, Han [1 ]
Wan, Danny [1 ]
De Greve, Kristiaan [1 ,3 ]
Loo, Roger [1 ,4 ]
机构
[1] imec, Kapeldreef 75, B-3001 Leuven, Belgium
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Katholieke Univ Leuven, Micro & Nano Syst, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
[4] Univ Ghent, Dept Solid State Sci, Krijgslaan 281,Bldg S1, B-9000 Ghent, Belgium
[5] Soitec, Chemin Fontaine, F-38190 Bernin, France
关键词
Strained Ge; Chemical vapor deposition; Hole spin qubit; Ge spin qubit; Hall mobility;
D O I
10.1016/j.mssp.2024.108231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 x 105 cm2/Vs is promising, while the low percolation density of 3 x 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality.
引用
收藏
页数:6
相关论文
共 33 条
  • [1] Unified kinetic model of dopant segregation during vapor-phase growth
    Arnold, CB
    Aziz, MJ
    [J]. PHYSICAL REVIEW B, 2005, 72 (19)
  • [2] First Demonstration of Vertically Stacked Gate-All-Around Highly Strained Germanium Nanowire pFETs
    Capogreco, E.
    Witters, L.
    Arimura, H.
    Sebaai, F.
    Porret, C.
    Hikavyy, A.
    Loo, R.
    Milenin, A. P.
    Eneman, G.
    Favia, P.
    Bender, H.
    Wostyn, K.
    Litta, E. Dentoni
    Schulze, A.
    Vrancken, C.
    Opdebeeck, A.
    Mitard, J.
    Langer, R.
    Holsteyns, F.
    Waldron, N.
    Barla, K.
    De Heyn, V.
    Mocuta, D.
    Collaert, N.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (11) : 5145 - 5150
  • [3] Degli Esposti D, 2024, Arxiv, DOI arXiv:2309.02832
  • [4] Accurate Quantification of Si/SiGe Interface Profiles via Atom Probe Tomography
    Dyck, Ondrej
    Leonard, Donovan N.
    Edge, Lisa F.
    Jackson, Clayton A.
    Pritchett, Emily J.
    Deelman, Peter W.
    Poplawsky, Jonathan D.
    [J]. ADVANCED MATERIALS INTERFACES, 2017, 4 (21):
  • [5] Crystalline defect analysis in epitaxial Si0.7Ge0.3 layer using site-specific ECCI-STEM
    Han, Han
    Strakos, Libor
    Hantschel, Thomas
    Porret, Clement
    Vystavel, Tomas
    Loo, Roger
    Caymax, Matty
    [J]. MICRON, 2021, 150
  • [6] Hartmann Jean-Michel, 2023, ECS Transactions, P53, DOI 10.1149/11101.0053ecst
  • [7] Hartmann J.M, 2023, ICSI ISTDM
  • [8] A four-qubit germanium quantum processor
    Hendrickx, Nico W.
    Lawrie, William I. L.
    Russ, Maximilian
    van Riggelen, Floor
    de Snoo, Sander L.
    Schouten, Raymond N.
    Sammak, Amir
    Scappucci, Giordano
    Veldhorst, Menno
    [J]. NATURE, 2021, 591 (7851) : 580 - +
  • [9] Use of high order precursors for manufacturing gate all around devices
    Hikavyy, A.
    Zyulkov, I.
    Mertens, H.
    Witters, L.
    Loo, R.
    Horiguchi, N.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 70 : 24 - 29
  • [10] Relaxation of single-electron spin qubits in silicon in the presence of interface steps
    Hosseinkhani, Amin
    Burkard, Guido
    [J]. PHYSICAL REVIEW B, 2021, 104 (08)