Deep learning-based automated pipeline for blood vessel detection and distribution analysis in multiplexed prostate cancer images

被引:3
|
作者
Karageorgos, Grigorios M. [1 ]
Cho, Sanghee [1 ]
McDonough, Elizabeth [1 ]
Chadwick, Chrystal [1 ]
Ghose, Soumya [1 ]
Owens, Jonathan [1 ]
Jung, Kyeong Joo [2 ]
Machiraju, Raghu [2 ]
West, Robert [3 ]
Brooks, James D. [4 ]
Mallick, Parag [5 ]
Ginty, Fiona [1 ]
机构
[1] GE Res, Niskayuna, NY 12309 USA
[2] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH USA
[3] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA USA
[4] Stanford Univ, Dept Urol, Sch Med, Stanford, CA USA
[5] Stanford Univ, Canary Ctr Canc Early Detect, Dept Radiol, Sch Med, Stanford, CA USA
来源
FRONTIERS IN BIOINFORMATICS | 2024年 / 3卷
基金
美国国家卫生研究院;
关键词
deep learning; blood vessel detection; pathology image analysis; prostate cancer; automated segmentation; MICROVESSEL DENSITY; ANGIOGENESIS;
D O I
10.3389/fbinf.2023.1296667
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Prostate cancer is a highly heterogeneous disease, presenting varying levels of aggressiveness and response to treatment. Angiogenesis is one of the hallmarks of cancer, providing oxygen and nutrient supply to tumors. Micro vessel density has previously been correlated with higher Gleason score and poor prognosis. Manual segmentation of blood vessels (BVs) In microscopy images is challenging, time consuming and may be prone to inter-rater variabilities. In this study, an automated pipeline is presented for BV detection and distribution analysis in multiplexed prostate cancer images.Methods: A deep learning model was trained to segment BVs by combining CD31, CD34 and collagen IV images. In addition, the trained model was used to analyze the size and distribution patterns of BVs in relation to disease progression in a cohort of prostate cancer patients (N = 215).Results: The model was capable of accurately detecting and segmenting BVs, as compared to ground truth annotations provided by two reviewers. The precision (P), recall (R) and dice similarity coefficient (DSC) were equal to 0.93 (SD 0.04), 0.97 (SD 0.02) and 0.71 (SD 0.07) with respect to reviewer 1, and 0.95 (SD 0.05), 0.94 (SD 0.07) and 0.70 (SD 0.08) with respect to reviewer 2, respectively. BV count was significantly associated with 5-year recurrence (adjusted p = 0.0042), while both count and area of blood vessel were significantly associated with Gleason grade (adjusted p = 0.032 and 0.003 respectively).Discussion: The proposed methodology is anticipated to streamline and standardize BV analysis, offering additional insights into the biology of prostate cancer, with broad applicability to other cancers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images
    Xu, Wenjing
    Yang, Xiong
    Li, Yikang
    Jiang, Guihua
    Jia, Sen
    Gong, Zhenhuan
    Mao, Yufei
    Zhang, Shuheng
    Teng, Yanqun
    Zhu, Jiayu
    He, Qiang
    Wan, Liwen
    Liang, Dong
    Li, Ye
    Hu, Zhanli
    Zheng, Hairong
    Liu, Xin
    Zhang, Na
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [2] Deep learning-based automated mitosis detection in histopathology images for breast cancer grading
    Mathew, Tojo
    Ajith, B.
    Kini, Jyoti R.
    Rajan, Jeny
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1192 - 1208
  • [3] Deep learning-based fully automated detection and segmentation of pelvic lymph nodes on diffusion-weighted images for prostate cancer: a multicenter study
    Sun, Zhaonan
    Wu, Pengsheng
    Zhao, Tongtong
    Gao, Ge
    Wang, Huihui
    Zhang, Xiaodong
    Wang, Xiaoying
    CANCER IMAGING, 2025, 25 (01)
  • [4] Automated Deep Learning-Based Detection of Osteoporotic Fractures in CT Images
    Yilmaz, Eren Bora
    Buerger, Christian
    Fricke, Tobias
    Sagar, Md Motiur Rahman
    Pena, Jaime
    Lorenz, Cristian
    Glueer, Claus-Christian
    Meyer, Carsten
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 376 - 385
  • [5] A deep learning-based tool for the automated detection and analysis of caveolae in transmission electron microscopy images
    Aboy-Pardal, Maria C. M.
    Jimenez-Carretero, Daniel
    Terres-Dominguez, Sara
    Pavon, Dacil M.
    Sotodosos-Alonso, Laura
    Jimenez-Jimenez, Victor
    Sanchez-Cabo, Fatima
    Del Pozo, Miguel A.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 224 - 237
  • [6] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [7] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [8] Automated Detection of Retinal Detachment Using Deep Learning-Based Segmentation on Ocular Ultrasonography Images
    Caki, Onur
    Guleser, Umit Yasar
    Ozkan, Dilek
    Harmanli, Mehmet
    Cansiz, Selahattin
    Kesim, Cem
    Akcan, Rustu Emre
    Merdzo, Ivan
    Hasanreisoglu, Murat
    Gunduz-Demir, Cigdem
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2025, 14 (02):
  • [9] A novel deep learning-based technique for detecting prostate cancer in MRI images
    Sanjay Kumar Singh
    Amit Sinha
    Harikesh Singh
    Aniket Mahanti
    Abhishek Patel
    Shubham Mahajan
    Amit Kant Pandit
    Vijayakumar Varadarajan
    Multimedia Tools and Applications, 2024, 83 : 14173 - 14187
  • [10] A novel deep learning-based technique for detecting prostate cancer in MRI images
    Singh, Sanjay Kumar
    Sinha, Amit
    Singh, Harikesh
    Mahanti, Aniket
    Patel, Abhishek
    Mahajan, Shubham
    Pandit, Amit Kant
    Varadarajan, Vijayakumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14173 - 14187