A machine learning approach for real-time cortical state estimation

被引:2
|
作者
Weiss, David A. [1 ,2 ]
Borsa, Adriano M. F. [1 ,3 ]
Pala, Aurelie [4 ]
Sederberg, Audrey J. [5 ,6 ]
Stanley, Garrett B. [2 ]
机构
[1] Georgia Inst Technol, Bioengn Program, Atlanta, GA USA
[2] Emory Univ, Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA USA
[4] Emory Univ, Dept Biol, Smyrna, GA USA
[5] Univ Minnesota, Dept Neurosci, Med Sch, Minneapolis, MN USA
[6] Univ Minnesota, Med Discovery Team Opt Imaging & Brain Sci, Minneapolis, MN USA
关键词
cortical state; LFP; machine learning; latent dynamics; variability; HIDDEN MARKOV-MODELS; BARREL CORTEX; BEHAVIORAL STATES; GABAERGIC NEURONS; BRAIN; MODULATION; CIRCUIT; DYNAMICS; SLEEP; ELECTROENCEPHALOGRAM;
D O I
10.1088/1741-2552/ad1f7b
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation. Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments. Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data. Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Real-Time Visual Tracking Approach Using Sparse Autoencoder and Extreme Learning Machine
    Dai, Liang
    Zhu, Yuesheng
    Luo, Guibo
    He, Chao
    Lin, Hanchi
    UNMANNED SYSTEMS, 2015, 3 (04) : 267 - 275
  • [42] Real-Time Analysis of the Dynamic Foot Function: A Machine Learning and Finite Element Approach
    Tarrade, Tristan
    Dakhil, Nawfal
    Behr, Michel
    Salin, Dorian
    Llari, Maxime
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [43] A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control
    Henri, Gonzague
    Lu, Ning
    Carrejo, Carlos
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [44] A Generalistic Approach to Machine-Learning-Supported Task Migration on Real-Time Systems
    Delgadillo, Octavio
    Blieninger, Bernhard
    Kuhn, Juri
    Baumgarten, Uwe
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2022, 12 (02)
  • [45] A Novel Online Machine Learning Approach for Real-Time Condition Monitoring of Rotating Machines
    Mostafavi, Alireza
    Sadighi, Ali
    2021 9TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2021, : 267 - 273
  • [46] Ensemble Machine Learning Approach For Identifying Real-Time Threats In Security Operations Center
    Femi-Oyewole, Favour
    Osamor, Victor
    Okunbor, Daniel
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2094 - 2122
  • [47] Machine Learning for Real-Time Heart Disease Prediction
    Bertsimas, Dimitris
    Mingardi, Luca
    Stellato, Bartolomeo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3627 - 3637
  • [48] Algorithmic trading of real-time electricity with machine learning
    Ganesh, Vighnesh Natarajan
    Bunn, Derek
    QUANTITATIVE FINANCE, 2024, 24 (11) : 1545 - 1559
  • [49] Learning to Translate in Real-time with Neural Machine Translation
    Gu, Jiatao
    Neubig, Graham
    Cho, Kyunghyun
    Li, Victor O. K.
    15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 1053 - 1062
  • [50] Real-Time Implementation of Machine-Learning DSP
    Borjeson, Erik
    Liu, Keren
    Hager, Christian
    Larsson-Edefors, Per
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,