A data-driven quasi-linear approximation for turbulent channel flow

被引:2
|
作者
Holford, Jacob J. [1 ]
Lee, Myoungkyu [2 ]
Hwang, Yongyun [1 ]
机构
[1] Imperial Coll London, Dept Aeronaut, South Kensington, London SW7 2AZ, England
[2] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
基金
英国工程与自然科学研究理事会;
关键词
turbulence modelling; turbulence theory; low-dimensional models; LARGE-SCALE STRUCTURES; ENERGY AMPLIFICATION; STATE ESTIMATION; MECHANISM; STATISTICS; TRANSITION; DYNAMICS; SYSTEMS; MODEL;
D O I
10.1017/jfm.2023.1073
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A data-driven implementation of a quasi-linear approximation is presented, extending a minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, J. Fluid Mech., 2020, 894:A23) to incorporate non-zero streamwise Fourier modes. A data-based approach is proposed, matching the two-dimensional wavenumber spectra for a fixed spanwise wavenumber between a direct numerical simulation (DNS) (Lee & Moser, J. Fluid Mech., 2015, 774:395-415) and that generated by the eddy viscosity-enhanced linearised Navier-Stokes equations at Re-tau similar or equal to 5200. Leveraging the self-similar nature of the energy-containing part in the DNS velocity spectra, a universal self-similar streamwise wavenumber weight is determined for the linearised fluctuation equations at Re-tau similar or equal to 5200. This data-driven quasi-linear approximation (DQLA) offers qualitatively similar findings to the MQLA, with quantitative improvements in the turbulence intensities and additional insights from the streamwise wavenumber spectra. By comparing the one-dimensional streamwise wavenumber spectra and two-dimensional spectra to DNS results, the limitations of the presented framework are discussed, mainly pertaining to the lack of the streak instability (or transient growth) mechanism and energy cascade from the linearised model. The DQLA is subsequently employed over a range of Reynolds numbers up to Re-tau = 10(5). Overall, the turbulence statistics and spectra produced by the DQLA scale consistently with the available DNS and experimental data, with the Townsend-Perry constants displaying a mild Reynolds dependence (Hwang, Hutchins & Marusic, J. Fluid Mech., 2022, 933:A8). The scaling behaviour of the turbulence intensity profiles deviates away from the classic ln(Re-tau) scaling, following the inverse centreline velocity scaling for the higher Reynolds numbers.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Big data-driven machine learning-enabled traffic flow prediction
    Kong, Fanhui
    Li, Jian
    Jiang, Bin
    Zhang, Tianyuan
    Song, Houbing
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2019, 30 (09)
  • [32] Decentralized Robust Data-Driven Predictive Control for Smoothing Mixed Traffic Flow
    Shang, Xu
    Wang, Jiawei
    Zheng, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 2075 - 2090
  • [33] Distributed data-driven observer for linear time invariant systems
    Alipouri, Yousef
    Zhao, Shunyi
    Huang, Biao
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (04) : 503 - 519
  • [34] Data-driven tuning of linear parameter-varying precompensators
    Butcher, Mark
    Karimi, Alireza
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2010, 24 (07) : 592 - 609
  • [35] Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization
    Gupta, Rishabh
    Zhang, Qi
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (05) : 2720 - 2735
  • [36] A Data-Driven Machine Learning Approach for Turbulent Flow Field Prediction Based on Direct Computational Fluid Dynamics Database
    Nemati, M.
    Jahangirian, A.
    JOURNAL OF APPLIED FLUID MECHANICS, 2024, 17 (01) : 60 - 74
  • [37] Linear stability of turbulent channel flow with one-point closure
    Kashyap, P., V
    Duguet, Y.
    Dauchot, and O.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (06):
  • [38] On the need of mode interpolation for data-driven Galerkin models of a transient flow around a sphere
    Stankiewicz, Witold
    Morzynski, Marek
    Kotecki, Krzysztof
    Noack, Bernd R.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2017, 31 (02) : 111 - 126
  • [39] Data-driven approach to design of passive flow control strategies
    Gomez, F.
    Blackburn, H. M.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [40] Data-driven polynomial chaos expansions: A weighted least-square approximation
    Guo, Ling
    Liu, Yongle
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 381 : 129 - 145