When are shrinking gradient Ricci soliton compact

被引:0
|
作者
Qu, Yuanyuan [1 ]
Wu, Guoqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Ricci soliton; Compact; Weighted Laplacian; CLASSIFICATION;
D O I
10.1016/j.difgeo.2023.102102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose (M4, g, f) is a complete shrinking gradient Ricci soliton. We give a sufficient condition for a soliton to be compact, generalizing previous result of Munteanu-Wang [17]. As an application, we give a classification of (M4, g, f) under some natural conditions. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Ricci Soliton and η-Ricci Soliton on Generalized Sasakian Space Form
    Pahan, Sampa
    Dutta, Tamalika
    Bhattacharyya, Arindam
    FILOMAT, 2017, 31 (13) : 4051 - 4062
  • [42] ε-REGULARITY FOR SHRINKING RICCI SOLITONS AND RICCI FLOWS
    Ge, Huabin
    Jiang, Wenshuai
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) : 1231 - 1256
  • [43] Ricci almost soliton and almost Yamabe soliton on Kenmotsu manifold
    Ghosh, Amalendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
  • [44] Rigidity of complete generic shrinking Ricci solitons
    Chu, Yawei
    Zhou, Jundong
    Wang, Xue
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 255 - 263
  • [45] RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD
    Ghosh, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (01) : 59 - 69
  • [46] Sasakian metrics as generalized η-Ricci soliton
    Ghosh, Amalendu
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (01) : 139 - 151
  • [47] Hitchin-Thorpe inequality and Kaehler metrics for compact almost Ricci soliton
    Brasil, A.
    Costa, E.
    Ribeiro Jr, E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1851 - 1860
  • [48] A rigidity theorem for codimension one shrinking gradient Ricci solitons in Rn+1
    Guan, Pengfei
    Lu, Peng
    Xu, Yiyan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) : 4019 - 4036
  • [49] Introduction to Gradient h-almost η-Ricci Soliton on Warped Product Spaces
    Bhunia, Nandan
    Pahan, Sampa
    Bhattacharyya, Arindam
    Datta, Sanjib Kumar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 1 - 11
  • [50] Geometry of shrinking Ricci solitons
    Munteanu, Ovidiu
    Wang, Jiaping
    COMPOSITIO MATHEMATICA, 2015, 151 (12) : 2273 - 2300