When are shrinking gradient Ricci soliton compact

被引:0
|
作者
Qu, Yuanyuan [1 ]
Wu, Guoqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Ricci soliton; Compact; Weighted Laplacian; CLASSIFICATION;
D O I
10.1016/j.difgeo.2023.102102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose (M4, g, f) is a complete shrinking gradient Ricci soliton. We give a sufficient condition for a soliton to be compact, generalizing previous result of Munteanu-Wang [17]. As an application, we give a classification of (M4, g, f) under some natural conditions. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Four-dimensional complete gradient shrinking Ricci solitons
    Cao, Huai-Dong
    Ribeiro, Ernani, Jr.
    Zhou, Detang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 127 - 144
  • [32] Gradient shrinking Ricci solitons of half harmonic Weyl curvature
    Wu, Jia-Yong
    Wu, Peng
    Wylie, William
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [33] Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay
    Chow, Bennett
    Lu, Peng
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) : 1007 - 1009
  • [34] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [35] On gradient Ricci soliton space-time warped product
    Chaudhary, Ram Shankar
    Pal, Buddhadev
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [36] Gradient Ricci-Yamabe Soliton on Twisted Product Manifolds
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    Han, Chang Yong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [37] Finite topological type of complete Finsler gradient shrinking Ricci solitons
    Yar Ahmadi, Mohamad
    Hedayatian, Sina
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2419 - 2426
  • [38] Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature
    Deng, Yuxing
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 211 - 226
  • [39] Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature
    Yuxing Deng
    Xiaohua Zhu
    Mathematische Zeitschrift, 2015, 279 : 211 - 226
  • [40] Hitchin–Thorpe inequality and Kaehler metrics for compact almost Ricci soliton
    A. Brasil
    E. Costa
    E. Ribeiro Jr.
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1851 - 1860