Severity Analysis of Mitral Regurgitation Using Discrete Wavelet Transform

被引:2
作者
Balodi, Arun [1 ]
Anand, R. S. [2 ]
Dewal, M. L. [2 ]
Rawat, Anurag [3 ]
机构
[1] Atria Inst Technol, Elect & Commun Engn Dept, Bangalore 560024, Karnataka, India
[2] Indian Inst Technol, Roorkee 247667, Uttar Pradesh, India
[3] Swami Rama Himalayan Univ, Dehra Dun 248016, Uttarakhand, India
关键词
Computer aided classification; Daubechies wavelet; Discrete wavelet transform; Mitral regurgitation; Texture analysis; ISOVELOCITY SURFACE-AREA; ULTRASOUND IMAGES; MICROSCOPIC IMAGES; FEATURE-SELECTION; VENA CONTRACTA; FLOW-RATE; CLASSIFICATION; FEATURES; EXTRACTION; 2D;
D O I
10.1080/03772063.2020.1814880
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper exhibits a computer-aided diagnosis system for the severity analysis of mitral regurgitation (MR) and assesses the discriminatory capability of Daubechies wavelet-based texture modeling. The Daubechies wavelet family has been utilized for the image decomposition because of its approximate shift invariance property. Seven statistical texture features have been utilized after the decomposition of the image up to four levels and after that concatenated. A supervised classifier, support vector machine (SVM) has been utilized with 10-fold cross-validation approach. The highest classification accuracies are 99.12 +/- 0.44 utilizing db2, 99.70 +/- 0.29 utilizing db4, and 97.68 +/- 1.04 utilizing db4 wavelet in A2C, A4C, and PLAX respectively. The exploratory outcomes show that the proposed algorithm is effective and db4 beat among the Daubechies wavelet family considered amid this audit for precise severity investigation of the MR images.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 38 条
[1]   STATISTICS NOTES - DIAGNOSTIC-TESTS-1 - SENSITIVITY AND SPECIFICITY .3. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 308 (6943) :1552-1552
[2]  
Balodi Arun, 2019, International Journal of Information Technology, V11, P647, DOI [10.1007/s41870-019-00331-9, 10.1007/s41870-019-00331-9]
[3]  
Balodi A., 2019, NEURAL COMPUT APPL, V32
[4]   Texture based classification of the severity of mitral regurgitation [J].
Balodi, Arun ;
Dewal, M. L. ;
Anand, R. S. ;
Rawat, Anurag .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 73 :157-164
[5]  
Baumgartner H, 1991, J Am Soc Echocardiogr, V4, P57
[6]   Reproducibility of Proximal Isovelocity Surface Area, Vena Contracta, and Regurgitant Jet Area for Assessment of Mitral Regurgitation Severity [J].
Biner, Simon ;
Rafique, Asim ;
Rafii, Farhad ;
Tolstrup, Kirsten ;
Noorani, Omid ;
Shiota, Takahiro ;
Gurudevan, Swaminatha ;
Siegel, Robert J. .
JACC-CARDIOVASCULAR IMAGING, 2010, 3 (03) :235-243
[7]   Segmentation of ultrasound images - multiresolution 2D and 3D algorithm based on global and local statistics [J].
Boukerroui, D ;
Baskurt, A ;
Noble, JA ;
Basset, O .
PATTERN RECOGNITION LETTERS, 2003, 24 (4-5) :779-790
[8]   Data dimensionality estimation methods: a survey [J].
Camastra, F .
PATTERN RECOGNITION, 2003, 36 (12) :2945-2954
[9]  
Chandra S, 2009, COMPUT CARDIOL, V36, P769
[10]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28