Linear and angular momentum conservation in surface hopping methods

被引:6
作者
Wu, Yanze [1 ]
Rawlinson, Jonathan [2 ]
Littlejohn, Robert G. [3 ]
Subotnik, Joseph E. [1 ]
机构
[1] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SEMICLASSICAL SCATTERING; CONICAL INTERSECTIONS; DERIVATIVE COUPLINGS; TIME; DYNAMICS; COLLISIONS; STATE;
D O I
10.1063/5.0179599
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that, for systems with spin-orbit coupling and an odd number of electrons, the standard fewest switches surface hopping algorithm does not conserve the total linear or angular momentum. This lack of conservation arises not so much from the hopping direction (which is easily adjusted) but more generally from propagating adiabatic dynamics along surfaces that are not time reversible. We show that one solution to this problem is to run along eigenvalues of phase-space electronic Hamiltonians H(R, P) (i.e., electronic Hamiltonians that depend on both nuclear position and momentum) with an electronic-nuclear coupling Gamma center dot P [see Eq. (25)], and we delineate the conditions that must be satisfied by the operator Gamma. The present results should be extremely useful as far as developing new semiclassical approaches that can treat systems where the nuclear, electronic orbital, and electronic spin degrees of freedom altogether are all coupled together, hopefully including systems displaying the chiral-induced spin selectivity effect.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On Generalized Fractional Spin, Fractional Angular Momentum, Fractional Momentum Operators in Quantum Mechanics
    El-Nabulsi, Rami Ahmad
    FEW-BODY SYSTEMS, 2020, 61 (03)
  • [42] Quantum dynamics of rovibrational transitions in H2-H2 collisions: Internal energy and rotational angular momentum conservation effects
    dos Santos, S. Fonseca
    Balakrishnan, N.
    Lepp, S.
    Quemener, G.
    Forrey, R. C.
    Hinde, R. J.
    Stancil, P. C.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (21)
  • [43] EFFECT OF ANGULAR MOMENTUM IN ZMP ON HUMAN MOTION PLANNING
    Chung, Hyun-Joon
    Chung, Goobong
    Xiang, Yujiang
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 1, 2017,
  • [44] Suppression of collapse for matter waves with orbital angular momentum
    Abdullaev, Jasur
    Desyatnikov, Anton S.
    Ostrovskaya, Elena A.
    JOURNAL OF OPTICS, 2011, 13 (06)
  • [45] Mass and angular momentum loss via decretion disks
    Krticka, J.
    Owocki, S. P.
    Meynet, G.
    ASTRONOMY & ASTROPHYSICS, 2011, 527
  • [46] Orbital Angular Momentum Multiplexed Quantum Dense Coding
    Chen, Yingxuan
    Liu, Shengshuai
    Lou, Yanbo
    Jing, Jietai
    PHYSICAL REVIEW LETTERS, 2021, 127 (09)
  • [47] Improving Atmospheric Angular Momentum Forecasts by Machine Learning
    Dill, R.
    Saynisch-Wagner, J.
    Irrgang, C.
    Thomas, M.
    EARTH AND SPACE SCIENCE, 2021, 8 (12)
  • [48] Tunable terahertz Bessel beams with orbital angular momentum
    Miyamoto, Katsuhiko
    Nomura, Riku
    Tsurumaru, Shohei
    Omatsu, Takashige
    OPTICS CONTINUUM, 2022, 1 (04): : 633 - 640
  • [49] Angular momentum redistribution in laser-induced demagnetization
    Dewhurst, J. K.
    Shallcross, S.
    Elliott, P.
    Eisebitt, S.
    Schmising, C. V. Korff
    Sharma, S.
    PHYSICAL REVIEW B, 2021, 104 (05)
  • [50] Twisted magnon beams carrying orbital angular momentum
    Jia, Chenglong
    Ma, Decheng
    Schaeffer, Alexander F.
    Berakdar, Jamal
    NATURE COMMUNICATIONS, 2019, 10 (1)