Linear and angular momentum conservation in surface hopping methods

被引:6
作者
Wu, Yanze [1 ]
Rawlinson, Jonathan [2 ]
Littlejohn, Robert G. [3 ]
Subotnik, Joseph E. [1 ]
机构
[1] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SEMICLASSICAL SCATTERING; CONICAL INTERSECTIONS; DERIVATIVE COUPLINGS; TIME; DYNAMICS; COLLISIONS; STATE;
D O I
10.1063/5.0179599
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that, for systems with spin-orbit coupling and an odd number of electrons, the standard fewest switches surface hopping algorithm does not conserve the total linear or angular momentum. This lack of conservation arises not so much from the hopping direction (which is easily adjusted) but more generally from propagating adiabatic dynamics along surfaces that are not time reversible. We show that one solution to this problem is to run along eigenvalues of phase-space electronic Hamiltonians H(R, P) (i.e., electronic Hamiltonians that depend on both nuclear position and momentum) with an electronic-nuclear coupling Gamma center dot P [see Eq. (25)], and we delineate the conditions that must be satisfied by the operator Gamma. The present results should be extremely useful as far as developing new semiclassical approaches that can treat systems where the nuclear, electronic orbital, and electronic spin degrees of freedom altogether are all coupled together, hopefully including systems displaying the chiral-induced spin selectivity effect.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] From transverse angular momentum to photonic wheels
    Aiello, Andrea
    Banzer, Peter
    Neugebaueru, Martin
    Leuchs, Gerd
    NATURE PHOTONICS, 2015, 9 (12) : 789 - 795
  • [32] Ultrafast angular momentum transfer in multisublattice ferrimagnets
    Bergeard, N.
    Lopez-Flores, V.
    Halte, V.
    Hehn, M.
    Stamm, C.
    Pontius, N.
    Beaurepaire, E.
    Boeglin, C.
    NATURE COMMUNICATIONS, 2014, 5
  • [33] Teleportation of a controllable orbital angular momentum generator
    Chen, Lixiang
    She, Weilong
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [34] Momentum Conservation and Condensing Vapor Bubbles
    Eames, I.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (09): : 1 - 9
  • [35] Angular momentum quantum backflow in the noncommutative plane
    Paccoia, Valentin Daniel
    Panella, Orlando
    Roy, Pinaki
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [36] On the reversibility of the Meissner effect and the angular momentum puzzle
    Hirsch, J. E.
    ANNALS OF PHYSICS, 2016, 373 : 230 - 244
  • [37] Encoding orbital angular momentum of light in magnets
    Fujita, Hiroyuki
    Sato, Masahiro
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [38] Is Core Angular Momentum Key to the Giant Dynamo?
    Schroder, Klaus-Peter
    Konstantinova-Antova, Renada
    UNIVERSE, 2022, 8 (08)
  • [39] Angular momentum in spin-phonon processes
    Garanin, D. A.
    Chudnovsky, E. M.
    PHYSICAL REVIEW B, 2015, 92 (02)
  • [40] On Mathematical Modeling of Swirling Turbulent Wakes with Varied Total Excess Momentum and Angular Momentum
    Chernykh, G. G.
    Demenkov, A. G.
    Kaptsov, O., V
    Schmidt, A., V
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2020, 29 (02) : 222 - 233