Perspectives on validation of clinical predictive algorithms

被引:22
作者
de Hond, Anne A. H. [1 ,2 ,3 ]
Shah, Vaibhavi B. B. [2 ]
Kant, Ilse M. J. [4 ]
Van Calster, Ben [3 ,5 ]
Steyerberg, Ewout W. [1 ,3 ]
Hernandez-Boussard, Tina [2 ,6 ,7 ]
机构
[1] Leiden Univ, Med Ctr, Clin AI Implementat & Res Lab, Leiden, Netherlands
[2] Stanford Univ, Dept Med Biomed Informat, Stanford, CA 94305 USA
[3] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[4] Univ Med Ctr Utrecht, Dept Digital Hlth, Utrecht, Netherlands
[5] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium
[6] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[7] Stanford Univ, Dept Epidemiol & Populat Hlth by courtesy, Stanford, CA USA
基金
美国国家卫生研究院; 比利时弗兰德研究基金会;
关键词
MODEL;
D O I
10.1038/s41746-023-00832-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The generalizability of predictive algorithms is of key relevance to application in clinical practice. We provide an overview of three types of generalizability, based on existing literature: temporal, geographical, and domain generalizability. These generalizability types are linked to their associated goals, methodology, and stakeholders.
引用
收藏
页数:3
相关论文
共 22 条
  • [1] Geographic and temporal validity of prediction models: different approaches were useful to examine model performance
    Austin, Peter C.
    van Klaveren, David
    Vergouwe, Yvonne
    Nieboer, Daan
    Lee, Douglas S.
    Steyerberg, Ewout W.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 79 : 76 - 85
  • [2] Machine Learning Comes of Age Local Impact versus National Generalizability
    Burns, Michael L.
    Kheterpal, Sachin
    [J]. ANESTHESIOLOGY, 2020, 132 (05) : 939 - 941
  • [3] Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1136/bmj.g7594, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.1016/j.eururo.2014.11.025]
  • [4] Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature
    Laura E. Cowley
    Daniel M. Farewell
    Sabine Maguire
    Alison M. Kemp
    [J]. Diagnostic and Prognostic Research, 3 (1)
  • [5] Predicting Readmission or Death After Discharge From the ICU: External Validation and Retraining of a Machine Learning Model
    de Hond, Anne A. H.
    Kant, Ilse M. J.
    Fornasa, Mattia
    Cina, Giovanni
    Elbers, Paul W. G.
    Thoral, Patrick J. J.
    Arbous, M. Sesmu
    Steyerberg, Ewout W. W.
    [J]. CRITICAL CARE MEDICINE, 2023, 51 (02) : 291 - 300
  • [6] Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
    de Hond, Anne A. H.
    Leeuwenberg, Artuur M.
    Hooft, Lotty
    Kant, Ilse M. J.
    Nijman, Steven W. J.
    van Os, Hendrikus J. A.
    Aardoom, Jiska J.
    Debray, Thomas P. A.
    Schuit, Ewoud
    van Smeden, Maarten
    Reitsma, Johannes B.
    Steyerberg, Ewout W.
    Chavannes, Niels H.
    Moons, Karel G. M.
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [7] A new framework to enhance the interpretation of external validation studies of clinical prediction models
    Debray, Thomas P. A.
    Vergouwe, Yvonne
    Koffijberg, Hendrik
    Nieboer, Daan
    Steyerberg, Ewout W.
    Moons, Karel G. M.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (03) : 280 - 289
  • [8] Efron B., 1993, INTRO BOOTSTRAP, DOI DOI 10.1007/978-1-4899-4541-9
  • [9] Futoma J, 2020, LANCET DIGIT HEALTH, V2, pE489, DOI 10.1016/S2589-7500(20)30186-2
  • [10] Generalizability of Cardiovascular Disease Clinical Prediction Models: 158 Independent External Validations of 104 Unique Models
    Gulati, Gaurav
    Upshaw, Jenica
    Wessler, Benjamin S.
    Brazil, Riley J.
    Nelson, Jason
    van Klaveren, David
    Lundquist, Christine M.
    Park, Jinny G.
    McGinnes, Hannah
    Steyerberg, Ewout W.
    Van Calster, Ben
    Kent, David M.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2022, 15 (04): : 248 - 260