Perspectives on validation of clinical predictive algorithms

被引:31
作者
de Hond, Anne A. H. [1 ,2 ,3 ]
Shah, Vaibhavi B. B. [2 ]
Kant, Ilse M. J. [4 ]
Van Calster, Ben [3 ,5 ]
Steyerberg, Ewout W. [1 ,3 ]
Hernandez-Boussard, Tina [2 ,6 ,7 ]
机构
[1] Leiden Univ, Med Ctr, Clin AI Implementat & Res Lab, Leiden, Netherlands
[2] Stanford Univ, Dept Med Biomed Informat, Stanford, CA 94305 USA
[3] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[4] Univ Med Ctr Utrecht, Dept Digital Hlth, Utrecht, Netherlands
[5] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium
[6] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[7] Stanford Univ, Dept Epidemiol & Populat Hlth by courtesy, Stanford, CA USA
基金
比利时弗兰德研究基金会; 美国国家卫生研究院;
关键词
MODEL;
D O I
10.1038/s41746-023-00832-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The generalizability of predictive algorithms is of key relevance to application in clinical practice. We provide an overview of three types of generalizability, based on existing literature: temporal, geographical, and domain generalizability. These generalizability types are linked to their associated goals, methodology, and stakeholders.
引用
收藏
页数:3
相关论文
共 22 条
[1]   Geographic and temporal validity of prediction models: different approaches were useful to examine model performance [J].
Austin, Peter C. ;
van Klaveren, David ;
Vergouwe, Yvonne ;
Nieboer, Daan ;
Lee, Douglas S. ;
Steyerberg, Ewout W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 79 :76-85
[2]   Machine Learning Comes of Age Local Impact versus National Generalizability [J].
Burns, Michael L. ;
Kheterpal, Sachin .
ANESTHESIOLOGY, 2020, 132 (05) :939-941
[3]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1111/eci.12376, 10.7326/M14-0697, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639]
[4]   Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature [J].
Laura E. Cowley ;
Daniel M. Farewell ;
Sabine Maguire ;
Alison M. Kemp .
Diagnostic and Prognostic Research, 3 (1)
[5]   Predicting Readmission or Death After Discharge From the ICU: External Validation and Retraining of a Machine Learning Model [J].
de Hond, Anne A. H. ;
Kant, Ilse M. J. ;
Fornasa, Mattia ;
Cina, Giovanni ;
Elbers, Paul W. G. ;
Thoral, Patrick J. J. ;
Arbous, M. Sesmu ;
Steyerberg, Ewout W. W. .
CRITICAL CARE MEDICINE, 2023, 51 (02) :291-300
[6]   Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review [J].
de Hond, Anne A. H. ;
Leeuwenberg, Artuur M. ;
Hooft, Lotty ;
Kant, Ilse M. J. ;
Nijman, Steven W. J. ;
van Os, Hendrikus J. A. ;
Aardoom, Jiska J. ;
Debray, Thomas P. A. ;
Schuit, Ewoud ;
van Smeden, Maarten ;
Reitsma, Johannes B. ;
Steyerberg, Ewout W. ;
Chavannes, Niels H. ;
Moons, Karel G. M. .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[7]   A new framework to enhance the interpretation of external validation studies of clinical prediction models [J].
Debray, Thomas P. A. ;
Vergouwe, Yvonne ;
Koffijberg, Hendrik ;
Nieboer, Daan ;
Steyerberg, Ewout W. ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (03) :280-289
[8]  
Efron B., 1994, An introduction to the bootstrap
[9]  
Futoma J, 2020, LANCET DIGIT HEALTH, V2, pE489, DOI 10.1016/S2589-7500(20)30186-2
[10]   Generalizability of Cardiovascular Disease Clinical Prediction Models: 158 Independent External Validations of 104 Unique Models [J].
Gulati, Gaurav ;
Upshaw, Jenica ;
Wessler, Benjamin S. ;
Brazil, Riley J. ;
Nelson, Jason ;
van Klaveren, David ;
Lundquist, Christine M. ;
Park, Jinny G. ;
McGinnes, Hannah ;
Steyerberg, Ewout W. ;
Van Calster, Ben ;
Kent, David M. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2022, 15 (04) :248-260