Counterfactual quantum key distribution with untrusted detectors

被引:0
作者
Lin, Ya-Qian [1 ]
Wang, Meng [1 ]
Yang, Xiu-Qing [1 ]
Liu, Hong-Wei [2 ]
机构
[1] Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R China
[2] China Informat Technol Secur Evaluat Ctr, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum key distribution; Security proof; Counterfactual communication;
D O I
10.1016/j.heliyon.2023.e13719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Compared with the traditional BB84 protocol, the counterfactual quantum key distribution (QKD) does not rely on any signal travelling in the quantum channel, and therefore can present a security advantage where Eve cannot fully access signal. However, the practical system may be damaged in a scenario where the devices are untrusted. In this paper, we analyze the security of counterfactual QKD in untrusted detectors scenario. We show that the requirement to disclose "which detector clicked" has become the main loophole in all counterfactual QKD versions. An eavesdropping scheme which is similar to the memory attack on device-independent QKD could break its security by exploiting detectors' imperfections. We consider two different counterfactual QKD protocols and analyze their security against this major loophole. One is a modified Noh09 protocol, which would be secure in untrusted detectors context. Another is a variant of counterfactual QKD with high efficiency (Phys. Rev. A 104 (2021) 022424) against a series of detectors side-channel attacks as well as against other attacks that exploit detectors imperfections.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] Memory Attacks on Device-Independent Quantum Cryptography
    Barrett, Jonathan
    Colbeck, Roger
    Kent, Adrian
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [2] Bennett C.H., 1984, P IEEE INT C COM SYS, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Cao WF, 2016, Arxiv, DOI [arXiv:1410.2928, 10.48550/arXiv.1410.2928, DOI 10.48550/ARXIV.1410.2928]
  • [4] Direct counterfactual communication via quantum Zeno effect
    Cao, Yuan
    Li, Yu-Huai
    Cao, Zhu
    Yin, Juan
    Chen, Yu-Ao
    Yin, Hua-Lei
    Chen, Teng-Yun
    Ma, Xiongfeng
    Peng, Cheng-Zhi
    Pan, Jian-Wei
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (19) : 4920 - 4924
  • [5] EXPERIMENTAL CONSEQUENCES OF OBJECTIVE LOCAL THEORIES
    CLAUSER, JF
    HORNE, MA
    [J]. PHYSICAL REVIEW D, 1974, 10 (02): : 526 - 535
  • [6] Robust and adaptable quantum key distribution network without trusted nodes
    Fan-Yuan, Guan-Jie
    Lu, Feng-Yu
    Wang, Shuang
    Yin, Zhen-Qiang
    He, De-Yong
    Chen, Wei
    Zhou, Zheng
    Wang, Ze-Hao
    Teng, Jun
    Guo, Guang-Can
    Han, Zheng-Fu
    [J]. OPTICA, 2022, 9 (07): : 812 - 823
  • [7] Measurement-device-independent quantum key distribution for nonstandalone networks
    Fan-Yuan, Guan-Jie
    Lu, Feng-Yu
    Wang, Shuang
    Yin, Zhen-Qiang
    He, De-Yong
    Zhou, Zheng
    Teng, Jun
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    [J]. PHOTONICS RESEARCH, 2021, 9 (10) : 1881 - 1891
  • [8] Quantum key distribution with untrusted detectors
    Gonzalez, P.
    Rebon, L.
    da Silva, T. Ferreira
    Figueroa, M.
    Saavedra, C.
    Curty, M.
    Lima, G.
    Xavier, G. B.
    Nogueira, W. A. T.
    [J]. PHYSICAL REVIEW A, 2015, 92 (02):
  • [9] Counterfactual quantum computation through quantum interrogation
    Hosten, O
    Rakher, MT
    Barreiro, JT
    Peters, NA
    Kwiat, PG
    [J]. NATURE, 2006, 439 (7079) : 949 - 952
  • [10] Counterfactual protocol within device independent framework and its insecurity
    Kamaruddin, Suhaili
    Shaari, Jesni Shamsul
    Kolenderski, Piotr
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)