Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces

被引:11
|
作者
Fu, Shuai [1 ]
Jia, Xiaoyu [1 ]
Hassan, Aliaa S. [1 ]
Zhang, Heng [1 ]
Zheng, Wenhao [1 ]
Gao, Lei [1 ,2 ]
Di Virgilio, Lucia [1 ]
Krasel, Sven [1 ]
Beljonne, David [3 ]
Tielrooij, Klaas-Jan [4 ]
Bonn, Mischa [1 ]
Wang, Hai I. [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Southeast Univ, Sch Phys, Key Lab MEMS, Minist Educ, Nanjing 211189, Peoples R China
[3] Univ Mons, Lab Chem Novel Mat, B-7000 Mons, Belgium
[4] Catalan Inst Nanosci & Nanotechnol ICN2, Barcelona 08193, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
van der Waals heterostructures; charge transfer; photogating; electrochemical gating; operando terahertz spectroscopy; GRAPHENE; PATHWAYS;
D O I
10.1021/acs.nanolett.2c04795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron-hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene-WS2 vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
引用
收藏
页码:1850 / 1857
页数:8
相关论文
共 50 条
  • [1] Charge transfer excitons at van der Waals interfaces
    Zhu, Xiaoyang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [2] Charge Transfer Excitons at van der Waals Interfaces
    Zhu, Xiaoyang
    Monahan, Nicholas R.
    Gong, Zizhou
    Zhu, Haiming
    Williams, Kristopher W.
    Nelson, Cory A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (26) : 8313 - 8320
  • [3] Electron transport across the Van der Waals interfaces
    Kim, Philip
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Interfacial charge and energy transfer in van der Waals heterojunctions
    Hu, Zehua
    Liu, Xue
    Hernandez-Martinez, Pedro Ludwig
    Zhang, Shishu
    Gu, Peng
    Du, Wei
    Xu, Weigao
    Demir, Hilmi Volkan
    Liu, Haiyun
    Xiong, Qihua
    INFOMAT, 2022, 4 (03)
  • [5] Electrical control of quantum emitters in a Van der Waals heterostructure
    Simon J. U. White
    Tieshan Yang
    Nikolai Dontschuk
    Chi Li
    Zai-Quan Xu
    Mehran Kianinia
    Alastair Stacey
    Milos Toth
    Igor Aharonovich
    Light: Science & Applications, 11
  • [6] Synthetic Semimetals with van der Waals Interfaces
    Reddy, Bojja Aditya
    Ponomarev, Evgeniy
    Gutierrez-Lezama, Ignacio
    Ubrig, Nicolas
    Barreteau, Celine
    Giannini, Enrico
    Morpurgo, Alberto F.
    NANO LETTERS, 2020, 20 (02) : 1322 - 1328
  • [7] Enhanced van der Waals interaction at interfaces
    Tomas, Marin-Slobodan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (16)
  • [8] Van der Waals interactions with soft interfaces
    Hanna, C. B.
    Pink, D. A.
    Quinn, B. E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (35) : 8129 - 8137
  • [9] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [10] Interfacial ferroelectricity by van der Waals sliding
    Stern, M. Vizner
    Waschitz, Y.
    Cao, W.
    Nevo, I
    Watanabe, K.
    Taniguchi, T.
    Sela, E.
    Urbakh, M.
    Hod, O.
    Ben Shalom, M.
    SCIENCE, 2021, 372 (6549) : 1462 - +