Nonparametric identification based on Gaussian process regression for distributed parameter systems

被引:1
|
作者
Wang, Lijie [1 ]
Xu, Zuhua [1 ,2 ]
Zhao, Jun [1 ]
Shao, Zhijiang [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
关键词
Nonparametric identification; Gaussian process regression; distributed parameter system; MODELING APPROACH; DECOMPOSITION; PREDICTION;
D O I
10.1080/00207721.2023.2169058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a nonparametric identification method based on Gaussian process regression (GPR) for completely unknown nonlinear distributed parameter systems (DPSs). Inspired by linear parameter-varying (LPV) modelling approach, an interpolated spatio-temporal Volterra model is developed to represent the DPSs in nonparametric form, in which local Volterra models are interpreted as Gaussian processes. According to the empirical Bayesian approach, we design the third-order stable kernel structure used for embedding prior knowledge and derive the estimation of hyperparameters. The hyperparameters included in local weighting functions and kernel functions are determined by the maximum likelihood method. By utilising the nonparametric identification approach to avoid model structure selection, the proposed method can improve identification result for completely unknown distributed parameter systems. Finally, two case studies validate the effectiveness of the proposed identification method.
引用
收藏
页码:1229 / 1242
页数:14
相关论文
共 50 条
  • [41] PARAMETER IDENTIFICATION FOR A CLASS OF DISTRIBUTED SYSTEMS
    FAIRMAN, FW
    SHEN, DWC
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (06) : 929 - &
  • [42] IDENTIFICATION OF DISTRIBUTED PARAMETER-SYSTEMS
    RAIBMAN, NS
    BOGDANOV, VO
    KNELLER, DV
    AUTOMATION AND REMOTE CONTROL, 1982, 43 (06) : 703 - 731
  • [43] Finite Gaussian Mixture Model Based Multimodeling for Nonlinear Distributed Parameter Systems
    Xu, Kangkang
    Yang, Haidong
    Zhu, Chengjiu
    Hu, Luoke
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (03) : 1754 - 1763
  • [44] Identification for a class of distributed parameter systems
    Zou, ZY
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (03) : 225 - 232
  • [45] PARAMETER-IDENTIFICATION IN DISTRIBUTED SYSTEMS
    BARUH, H
    MEIROVITCH, L
    JOURNAL OF SOUND AND VIBRATION, 1985, 101 (04) : 551 - 564
  • [46] ON IDENTIFICATION FOR DISTRIBUTED PARAMETER-SYSTEMS
    KOSKI, T
    AKADEMI, A
    LOGES, W
    LECTURE NOTES IN MATHEMATICS, 1987, 1250 : 152 - 159
  • [47] Identification for a class of distributed parameter systems
    邹振宇
    Progress in Natural Science, 2000, (03) : 67 - 74
  • [48] Parameter inversion of the diffusive-viscous wave equation based on Gaussian process regression
    Bai, Zhaowei
    Zhao, Haixia
    Wang, Shaoru
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2023, 20 (06) : 1291 - 1304
  • [49] Characteristics based parameter identification for hyperbolic distributed systems and its application in flue gas desulfurization process
    Fan, Liting
    Wang, Fuli
    Li, Hongru
    Huagong Xuebao/CIESC Journal, 2013, 64 (07): : 2543 - 2549
  • [50] PARAMETER-IDENTIFICATION OF DISTRIBUTED PARAMETER-SYSTEMS
    TRAVIS, CC
    WHITE, LW
    MATHEMATICAL BIOSCIENCES, 1985, 77 (1-2) : 341 - 352