length Mid-infrared absorption spectroscopy of ethylene at 10.5 μm using a chalcogenide hollow-core antiresonant fiber

被引:8
作者
Hu, Mengyuan [1 ]
Ventura, Andrea [2 ]
Hayashi, Juliano Grigoleto [2 ]
Poletti, Francesco [2 ]
Ren, Wei [1 ]
机构
[1] Chinese Univ Hong Kong, Shenzhen Res Inst, Dept Mech & Automat Engn, Hong Kong, Peoples R China
[2] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, England
关键词
Mid-infrared; Hollow-core antiresonant fiber; Chalcogenide; Gas sensing; QUANTUM CASCADE LASER; SENSOR; LIMITS;
D O I
10.1016/j.optlastec.2022.108932
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the mid-infrared absorption spectroscopy with a chalcogenide glass IG3 hollow-core anti -resonant fiber (HC-ARF) for gas sensing at 10.5 mu m. A continuous-wave quantum cascade laser (CW-QCL) is adopted to detect the strong absorption line of ethylene (C2H4) centered at 949.5 cm-1 by coupling the laser beam into a chalcogenide HC-ARF of 22 cm in length. Both direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) are performed in this study for comparison. At the integration time of 0.1 s, the noise equivalent absorption (NEA) coefficient is determined to be 4.7 x 10-5 cm-1 for DAS and 5.1 x 10-6 cm- 1 for WMS, respectively. Based on the Allan-Werle deviation analysis, the NEA coefficient of WMS can be further improved to 4.0 x 10-7 cm-1 by using a longer integration time of 80 s. The combination of QCLs and chalco-genide glass HC-ARFs provides a promising platform for mid-infrared gas sensing applications.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform [J].
Carcreff, Julie ;
Chevire, Francois ;
Galdo, Elodie ;
Lebullenger, Ronan ;
Gautier, Antoine ;
Adam, Jean Luc ;
Le Coq, David ;
Brilland, Laurent ;
Chahal, Radwan ;
Renversez, Gilles ;
Troles, Johann .
OPTICAL MATERIALS EXPRESS, 2021, 11 (01) :198-209
[2]  
Chen F., 2021, OPT INFOBASE C PAP, V28, P38115
[3]   Laser sensors for energy systems and process industries: Perspectives and directions [J].
Farooq, Aamir ;
Alquaity, Awad B. S. ;
Raza, Mohsin ;
Nasir, Ehson F. ;
Yao, Shunchun ;
Ren, Wei .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 91
[4]  
Fibers S.O, 2019, 6 INT WORKSH SPEC OP
[5]   Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion [J].
Gattass, Rafael R. ;
Rhonehouse, Daniel ;
Gibson, Daniel ;
McClain, Collin C. ;
Thapa, Rajesh ;
Nguyen, Vinh Q. ;
Bayya, Shyam S. ;
Weiblen, R. Joseph ;
Menyuk, Curtis R. ;
Shaw, L. Brandon ;
Sanghera, Jasbinder S. .
OPTICS EXPRESS, 2016, 24 (22) :25697-25703
[6]   ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes [J].
Ghorbani, Ramin ;
Schmidt, Florian M. .
OPTICS EXPRESS, 2017, 25 (11) :12743-12752
[7]   Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions [J].
Jaworski, Piotr ;
Koziol, Pawel ;
Krzempek, Karol ;
Wu, Dakun ;
Yu, Fei ;
Bojes, Piotr ;
Dudzik, Grzegorz ;
Liao, Meisong ;
Abramski, Krzysztof ;
Knight, Jonathan .
SENSORS, 2020, 20 (14) :1-12
[8]   Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range [J].
Jin, Wei ;
Cao, Yingchun ;
Yang, Fan ;
Ho, Hoi Lut .
NATURE COMMUNICATIONS, 2015, 6
[9]   Hollow core photonic crystal fiber as a reusable Raman biosensor [J].
Khetani, Altaf ;
Riordon, Jason ;
Tiwari, Vidhu ;
Momenpour, Ali ;
Godin, Michel ;
Anis, Hanan .
OPTICS EXPRESS, 2013, 21 (10) :12340-12350
[10]   Light transmission in negative curvature hollow core fiber in extremely high material loss region [J].
Kolyadin, Anton N. ;
Kosolapov, Alexey F. ;
Pryamikov, Andrey D. ;
Biriukov, Alexander S. ;
Plotnichenko, Victor G. ;
Dianov, Evgeny M. .
OPTICS EXPRESS, 2013, 21 (08) :9514-9519