Two-Parameter Bifurcations and Hidden Attractors in a Class of 3D Linear Filippov Systems

被引:5
作者
Wei, Zhouchao [1 ,2 ]
Wang, Fanrui [1 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 04期
基金
中国国家自然科学基金;
关键词
Pseudo-Bautin bifurcation; boundary equilibrium bifurcation; hidden attractor; Poincare map; Filippov system; PIECEWISE-SMOOTH; ORBITS;
D O I
10.1142/S0218127424500524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take into consideration two different kinds of two-parameter bifurcations in a class of 3D linear Filippov systems, namely pseudo-Bautin bifurcation and boundary equilibrium bifurcations for two scenarios. The bifurcation conditions for generating rich dynamic behaviors are established. The main objective is to investigate the effects of two parameters interacting simultaneously on a variety of dynamic phenomena. In order to analyze the pseudo-Bautin bifurcation, we build the Poincare map and analyze the number of fixed points whose types are related to the crossing limit cycles. In order to analyze boundary equilibrium bifurcations for two scenarios, we perform an analysis on the existence and admissibility of equilibria. Besides, a comprehensive investigation on hidden attractors induced by boundary equilibrium bifurcations is conducted. The novelty resides in overcoming the constraints of previous studies that solely take into account the dynamics of individual parameter variations. We innovatively characterize the two-parameter bifurcation mechanism of a new class of Filippov systems, and qualitatively demonstrate the coexistence of hidden attractor and stable pseudo-equilibrium.
引用
收藏
页数:20
相关论文
共 47 条
[1]   Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Michael, J. ;
Thompson, T. ;
Grebogi, Celso .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :635-652
[2]   On simplifying and classifying piecewise-linear systems [J].
Carmona, V ;
Freire, E ;
Ponce, E ;
Torres, F .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (05) :609-620
[3]   Periodic orbits for perturbations of piecewise linear systems [J].
Carmona, Victoriano ;
Fernandez-Garcia, Soledad ;
Freire, Emilio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :2244-2266
[4]   Pseudo-Bautin Bifurcation in 3D Filippov Systems [J].
Castillo, Juan ;
Verduzco, Fernando .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08)
[5]   The pseudo-Hopf bifurcation and derived attractors in 3D Filippov linear systems with a Teixeira singularity [J].
Castillo, Juan .
CHAOS, 2020, 30 (11)
[6]   Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions and two predators competing for one prey [J].
Cristiano, R. ;
Henao, M. M. ;
Pagano, D. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (02)
[7]   Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications [J].
Cristiano, Rony ;
Tonon, Durval J. ;
Velter, Mariana Q. .
JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (04)
[8]   Two-Parameter Boundary Equilibrium Bifurcations in 3D-Filippov Systems [J].
Cristiano, Rony ;
Pagano, Daniel J. .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (06) :2845-2875
[9]   On the Teixeira singularity bifurcation in a DC-DC power electronic converter [J].
Cristiano, Rony ;
Ponce, Enrique ;
Pagano, Daniel J. ;
Granzotto, Mathieu .
NONLINEAR DYNAMICS, 2019, 96 (02) :1243-1266
[10]   Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems [J].
di Bernardo, M. ;
Nordmark, A. ;
Olivar, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) :119-136