Rep-YOLO: an efficient detection method for mine personnel

被引:10
作者
Shao, Xiaoqiang [1 ,2 ]
Liu, Shibo [1 ,2 ]
Li, Xin [1 ,2 ]
Lyu, Zhiyue [1 ,2 ]
Li, Hao [1 ,2 ]
机构
[1] Xian Univ Sci & Technol, Coll Elect & Control Engn, Xian 710054, Peoples R China
[2] Xian Key Lab Elect Equipment Condit Monitoring & P, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Mine personnel detection; Rep-YOLO; CVCA; DER backbone; Slim-neck;
D O I
10.1007/s11554-023-01407-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of underground personnel is one of the key technologies in computer vision. However, this detection technique is susceptible to complex environments, resulting in low accuracy and slow speed. To accurately detect underground coal mine operators in complex environments, we combine the underground image features with K-means++ clustering anchor frames and propose a new Re-parameterization YOLO (Rep-YOLO) detection algorithm. First, the Criss-Cross-Vertical with Channel Attention (CVCA) mechanism is introduced at the end of the network to capture the Long-Range Dependencies (LRDs) in the image. This mechanism also emphasizes the significance of different channels to enhance image processing performance and improve the representation ability of the model. Second, the new Deep Extraction of Re-parameterization (DER) backbone network is designed, which adopts the re-parameterization structure to reduce the number of parameters and computation of the model. Additionally, each DER-block fuses different scales of features to enhance the accuracy of the model's detection capabilities. Finally, Rep-YOLO is optimized using a slim-neck structure, which reduces the complexity of the Rep-YOLO while maintaining sufficient accuracy. The results showed that the Rep-YOLO model proposed in this paper achieved an accuracy of 87.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$87.5\%$$\end{document}, a recall rate of 77.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$77.2\%$$\end{document}, an Average Precision (AP) of 83.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$83.1\%$$\end{document}, and a Frame Per Second (FPS) of 71.9. Compared to eight different models, the recall, AP50, and FPS of the Rep-YOLO model were improved. The research shows that the Rep-YOLO model can provide a real-time and efficient method for mine personnel detection. Source code is released in https://github.com/DrLSB/Rep-YOLO.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] CSPNet: A New Backbone that can Enhance Learning Capability of CNN
    Wang, Chien-Yao
    Liao, Hong-Yuan Mark
    Wu, Yueh-Hua
    Chen, Ping-Yang
    Hsieh, Jun-Wei
    Yeh, I-Hau
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1571 - 1580
  • [42] Uncovering the effects of external demand on China's coal consumption: A global input-output analysis
    Wang, Qiang
    Ge, Shuting
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 245 (245)
  • [43] Wang QL, 2020, PROC CVPR IEEE, P11531, DOI 10.1109/CVPR42600.2020.01155
  • [44] Pedestrian detection in underground mines via parallel feature transfer network
    Wei, Xing
    Zhang, Haitao
    Liu, Shaofan
    Lu, Yang
    [J]. PATTERN RECOGNITION, 2020, 103
  • [45] CBAM: Convolutional Block Attention Module
    Woo, Sanghyun
    Park, Jongchan
    Lee, Joon-Young
    Kweon, In So
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 3 - 19
  • [46] Xu SL, 2022, Arxiv, DOI [arXiv:2203.16250, 10.48550/arXiv.2203.16250, DOI 10.48550/ARXIV.2203.16250]
  • [47] Zhang M.Z., 2022, Journal of Mine Automation, V48
  • [48] Zheng ZH, 2020, AAAI CONF ARTIF INTE, V34, P12993
  • [49] [智宁 Zhi Ning], 2017, [煤炭学报, Journal of China Coal Society], V42, P2190
  • [50] Zhu L.Y., 2019, Research on mine image enhancement and underground personnel detection