Approximate Controllability for Hilfer Fractional Stochastic Non-instantaneous Impulsive Differential System with Rosenblatt Process and Poisson Jumps

被引:18
作者
Gokul, G. [1 ]
Udhayakumar, R. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Approximate controllability; Stochastic differential systems; Non-instantaneous impulses; Poisson jumps; HYERS-ULAM STABILITY; EQUATIONS; EXISTENCE;
D O I
10.1007/s12346-023-00912-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the approximate controllability of Hilfer fractional stochastic differential system involving non-instantaneous impulses with Rosenblatt process and Poisson jumps. By utilising stochastic analysis, semigroup theory, fractional calculus, and Krasnoselskii's fixed point theorem, we prove our primary outcomes. Firstly, we prove the approximate controllability of the Hilfer fractional system. As a final step, we provide an example to highlight our discussion.
引用
收藏
页数:26
相关论文
共 45 条
[1]  
Agarwal R., 2017, Non-instantaneous impulses in differential equations, DOI [10.1007/978-3-319-66384-5, DOI 10.1007/978-3-319-66384-5]
[2]   Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. ;
El Bab, A. S. Okb ;
Ramadan, M. Elsaid .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[3]   Hilfer fractional stochastic integro-differential equations [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 :182-189
[4]   Study of fractional order pantograph type impulsive antiperiodic boundary value problem [J].
Ali, Arshad ;
Shah, Kamal ;
Abdeljawad, Thabet ;
Khan, Hasib ;
Khan, Aziz .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[5]   Stability and existence results for a class of nonlinear fractional differential equations with singularity [J].
Alkhazzan, Abdulwasea ;
Jiang, Peng ;
Baleanu, Dumitru ;
Khan, Hasib ;
Khan, Aziz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9321-9334
[6]   Study a class of Hilfer fractional stochastic integrodifferential equations with Poisson jumps [J].
Balasubramaniam, P. ;
Saravanakumar, S. ;
Ratnavelu, K. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (06) :1021-1036
[7]  
Banupriya K., 2022, Nonauton. Dyn. Syst, V9, P256, DOI [10.1515/msds-2022-0159, DOI 10.1515/MSDS-2022-0159]
[8]   Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives [J].
Bedi, Pallavi ;
Kumar, Anoop ;
Khan, Aziz .
CHAOS SOLITONS & FRACTALS, 2021, 150
[9]   Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators [J].
Bedi, Pallavi ;
Kumar, Anoop ;
Abdeljawad, Thabet ;
Khan, Zareen A. ;
Khan, Aziz .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[10]   Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators [J].
Bose, Chandrabose Sindhu Varun ;
Udhayakumar, Ramalingam ;
Elshenhab, Ahmed M. ;
Kumar, Marappan Sathish ;
Ro, Jong-Suk .
FRACTAL AND FRACTIONAL, 2022, 6 (10)