A linearizing-decoupling finite element method with stabilization for the Peterlin viscoelastic model

被引:3
作者
Xia, Lekang [1 ]
Zhou, Guanyu [2 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, 4 Sect 2,North Jianshe Rd, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Sch Math Sci, 2006 Xiyuan Ave, Chengdu, Peoples R China
关键词
Peterlin viscoelastic model; Linearizing-decoupling; Finite element method; Error analysis; NUMERICAL-ANALYSIS; GLOBAL EXISTENCE; FLUID-FLOW; APPROXIMATION; STABILITY;
D O I
10.1007/s13160-023-00629-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a linearizing-decoupling finite element method for the nonstationary diffusive Peterlin viscoelastic system with shear-dependent viscosity modeling the incompressible polymeric fluid flow, where the equation of the conformation tensor C contains a diffusion term with a tiny diffusion coefficient epsilon. By using the stabilizing terms alpha(-1)(1)Delta(u(n+1) - u(n)) and alpha(-1 Delta)(2)(Cn+1 - C-n), at every time level, the velocity u and each component C-ij of the conformation tensor C can be computed in parallel by our scheme. We obtain the error estimate C(tau + h(2)) for the P2/P1/P2 element, where the constant C depends on the norm of the solution but is not explicitly related to the reciprocal of epsilon. We conduct several numerical simulations and compute the experimental convergence rates to compare with the theoretical results.
引用
收藏
页码:789 / 819
页数:31
相关论文
共 25 条
[1]  
[Anonymous], 2012, Finite element methods for Navier-Stokes equations: theory and algorithms
[2]   FINITE-ELEMENT APPROXIMATION OF VISCOELASTIC FLUID-FLOW - EXISTENCE OF APPROXIMATE SOLUTIONS AND ERROR-BOUNDS .1. DISCONTINUOUS CONSTRAINTS [J].
BARANGER, J ;
SANDRI, D .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :13-27
[3]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15, DOI 10. 1007/978-1-4612- 3172-1.
[4]  
Brunk A., 2022, COMMUN MATH SCI, V20, P201, DOI 10.4310/CMS.2022.v20.n1.a6
[5]   Pointwise error estimates for finite element solutions of the Stokes problem [J].
Chen, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :1-28
[6]   Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation [J].
Ervin, VJ ;
Heuer, N .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (02) :248-283
[7]   Maximum-norm stability of the finite element Stokes projection [J].
Girault, V ;
Nochetto, RH ;
Scott, R .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (03) :279-330
[8]   POINTWISE ERROR ESTIMATES OF FINITE ELEMENT APPROXIMATIONS TO THE STOKES PROBLEM ON CONVEX POLYHEDRA [J].
Guzman, J. ;
Leykekhman, D. .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :1879-1902
[9]   Semi-Discrete Galerkin Finite Element Method for the Diffusive Peterlin Viscoelastic Model [J].
Jiang, Yao-Lin ;
Yang, Yun-Bo .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (02) :275-296
[10]  
Lions PL, 2000, CHINESE ANN MATH B, V21, P131, DOI 10.1142/S0252959900000170