Active deep learning for segmentation of industrial CT data

被引:0
|
作者
Michen, Markus [1 ]
Rehak, Markus [1 ]
Hassler, Ulf [1 ]
机构
[1] Fraunhofer Entwicklungszentrum Rontgentechn EZRT, Fraunhofer Inst Integrated Circuits IIS, Flugplatzstr 75, D-90768 Furth, Germany
关键词
active deep learning; computed tomography; image processing; plant segmentation; semantic segmentation; single fiber analysis;
D O I
10.1515/teme-2023-0047
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This contribution proposes an approach and the respective tool that uses Active Deep Learning (ADL) to segment industrial three-dimensional computed tomography (3D CT) data. The general approach is application independent and includes an iterative human-in-the-loop Active Learning (AL) process that produces labeled training data and a trained Deep Learning (DL) model for semantic segmentation. The model is continuously improved during iterations such that manual labeling effort is reduced. In addition, the user can minimize user interaction with the aid of a random forest-based classifier and focus on unclear or invalid segmentation results. The complete workflow is implemented within one single Python tool. The approach is demonstrated in detail for two industrial use cases: Single fiber analysis and plant segmentation. For plant segmentation, the method is compared to a baseline and a classic image processing algorithm.
引用
收藏
页码:500 / 511
页数:12
相关论文
共 50 条
  • [1] Automatic segmentation of ameloblastoma on ct images using deep learning with limited data
    Xu, Liang
    Qiu, Kaixi
    Li, Kaiwang
    Ying, Ge
    Huang, Xiaohong
    Zhu, Xiaofeng
    BMC ORAL HEALTH, 2024, 24 (01)
  • [2] Automatic segmentation of ameloblastoma on ct images using deep learning with limited data
    Liang Xu
    Kaixi Qiu
    Kaiwang Li
    Ge Ying
    Xiaohong Huang
    Xiaofeng Zhu
    BMC Oral Health, 24
  • [3] Automatic cervical lymphadenopathy segmentation from CT data using deep learning
    Courot, Adele
    Cabrera, Diana L. F.
    Gogin, Nicolas
    Gaillandre, Loic
    Rico, Geoffrey
    Zhang-Yin, Jules
    Elhaik, Mickael
    Bidault, Francois
    Bousaid, Imad
    Lassau, Nathalie
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (11) : 675 - 681
  • [4] CT Lung Nodule Segmentation: A Comparative Study of Data Preprocessing and Deep Learning Models
    Chen, Weihao
    Wang, Yu
    Tian, Dingcheng
    Yao, Yudong
    IEEE ACCESS, 2023, 11 : 34925 - 34931
  • [5] Deep learning method for localization and segmentation of abdominal CT
    Dabiri, Setareh
    Popuri, Karteek
    Ma, Cydney
    Chow, Vincent
    Feliciano, Elizabeth M. Cespedes
    Caan, Bette J.
    Baracos, Vickie E.
    Beg, Mirza Faisal
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 85
  • [6] An overview of industrial image segmentation using deep learning models
    Wang, Guina
    Li, Zhen
    Weng, Guirong
    Chen, Yiyang
    INTELLIGENCE & ROBOTICS, 2025, 5 (01): : 143 - 180
  • [7] Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning
    Cai, Jason C.
    Akkus, Zeynettin
    Philbrick, Kenneth A.
    Boonrod, Arunnit
    Hoodeshenas, Safa
    Weston, Alexander D.
    Rouzrokh, Pouria
    Conte, Gian Marco
    Zeinoddini, Atefeh
    Vogelsang, David C.
    Huang, Qiao
    Erickson, Bradley J.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) : 1 - 12
  • [8] Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images
    Li, Lu
    Wei, Meng
    Liu, Bo
    Atchaneeyasakul, Kunakorn
    Zhou, Fugen
    Pan, Zehao
    Kumar, Shimran A.
    Zhang, Jason Y.
    Pu, Yuehua
    Liebeskind, David S.
    Scalzo, Fabien
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1646 - 1659
  • [9] DIAL: Deep Interactive and Active Learning for Semantic Segmentation in Remote Sensing
    Lenczner, Gaston
    Chan-Hon-Tong, Adrien
    Le Saux, Bertrand
    Luminari, Nicola
    Le Besnerais, Guy
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3376 - 3389
  • [10] Fast body part segmentation and tracking of neonatal video data using deep learning
    Christoph Hoog Antink
    Joana Carlos Mesquita Ferreira
    Michael Paul
    Simon Lyra
    Konrad Heimann
    Srinivasa Karthik
    Jayaraj Joseph
    Kumutha Jayaraman
    Thorsten Orlikowsky
    Mohanasankar Sivaprakasam
    Steffen Leonhardt
    Medical & Biological Engineering & Computing, 2020, 58 : 3049 - 3061