Machine Learning-Based Pain Severity Classification of Lumbosacral Radiculopathy Using Infrared Thermal Imaging

被引:2
|
作者
Rim, Jinu [1 ]
Ryu, Seungjun [2 ,3 ]
Jang, Hyunjun [1 ]
Zhang, Hoyeol [3 ]
Cho, Yongeun [4 ]
机构
[1] Yonsei Univ, Gangnam Severance Hosp, Coll Med, Dept Neurosurg, Seoul 06273, South Korea
[2] Eulji Univ, Daejeon Eulji Univ Hosp, Coll Med, Dept Neurosurg, Daejeon 34824, South Korea
[3] Yonsei Univ, Ilsan Hosp, Coll Med, Dept Neurosurg,Natl Hlth Insurance Serv, Ilsan 10444, South Korea
[4] Wiltse Mem Hosp, Dept Neurosurg, Suwon 16480, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 06期
关键词
infrared thermography; lumbosacral radiculopathy; machine learning; multiclass classification;
D O I
10.3390/app13063541
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pain is subjective and varies among individuals. Doctors determine pain severity based on a patient's self-reported symptoms. In such situations, a language barrier may prevent patients from expressing their pain accurately, which may cause doctors to underestimate their pain degree. Moreover, patients' subjective descriptions of pain can determine their eligibility for secondary benefits, as in the case of compensation for traffic or industrial accidents. Therefore, to perform a multiclass prediction of the severity of lumbar radiculopathy, the authors applied digital infrared thermographic imaging (DITI) to a machine-learning (ML) algorithm. The DITI dataset included data from a healthy population and patients with radiculopathy with herniated lumbar discs at the L3/4, L4/5, and L5/S1 levels. The dataset of 1000 patients was split into training and test datasets in a 7:3 ratio to evaluate the model's performance. For the training dataset, the average accuracy, precision, recall, and F1 score were 0.82, 0.76, 0.72, and 0.74, respectively. For the test dataset, these values were 0.77, 0.71, 0.75, and 0.73, respectively. Applying the ML algorithm to a pain-severity classification using thermographic images will aid in the treatment of lumbosacral radiculopathy and allow providers to monitor the therapeutic effect of interventions through an assessment of physiological evidence.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Machine Learning-Based Severity Classification of Spinal Cord Injury Patients Using Straight Leg Raising Test
    Yoshikura, Ryoto
    Izumi, Shintaro
    Sugimoto, Tatsuya
    Kawaguchi, Hiroshi
    2022 IEEE SENSORS, 2022,
  • [12] Machine learning-based classification of pineal germinoma from magnetic resonance imaging
    Supbumrung, Suchada
    Kaewborisutsakul, Anukoon
    Tunthanathip, Thara
    WORLD NEUROSURGERY-X, 2023, 20
  • [13] Machine learning-based detection of freezing events using infrared thermography
    Shammi, Sayma
    Sohel, Ferdous
    Diepeveen, Dean
    Zander, Sebastian
    Jones, Michael G. K.
    Bekuma, Amanuel
    Biddulph, Ben
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198
  • [14] Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery
    Kaplan, Gordana
    Gasparovic, Mateo
    Kaplan, Onur
    Adjiski, Vancho
    Comert, Resul
    Mobariz, Mohammad Asef
    SUSTAINABILITY, 2023, 15 (07)
  • [15] Infrared Thermal Imaging-Based Turbine Blade Crack Classification Using Deep Learning
    Benedict E. Jaeger
    Simon Schmid
    Christian U. Grosse
    Anian Gögelein
    Frederik Elischberger
    Journal of Nondestructive Evaluation, 2022, 41
  • [16] Infrared Thermal Imaging-Based Turbine Blade Crack Classification Using Deep Learning
    Jaeger, Benedict E.
    Schmid, Simon
    Grosse, Christian U.
    Goegelein, Anian
    Elischberger, Frederik
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2022, 41 (04)
  • [17] Machine Learning-Based Network Attack Classification
    Liang, Tianhong
    Ma, Li
    Wang, Zhichuang
    Hou, Fangyuan
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 2392 - 2397
  • [18] Machine learning-based classification of maritime accidents
    Atak, Ustun
    Demiray, Ahmet
    SHIPS AND OFFSHORE STRUCTURES, 2025,
  • [19] Machine Learning-based Classification of Hyperspectral Imagery
    Haq, Mohd Anul
    Rehman, Ziaur
    Ahmed, Ahsan
    Khan, Mohd Abdul Rahim
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 193 - 202
  • [20] Machine Learning-Based Classification of Dislocation Microstructures
    Steinberger, Dominik
    Song, Hengxu
    Sandfeld, Stefan
    FRONTIERS IN MATERIALS, 2019, 6