Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells

被引:6
作者
Jeong, Hoon-Seok [1 ]
Kim, Dongeon [1 ]
Jee, Seungin [1 ]
Si, Min-Jae [1 ]
Kim, Changjo [2 ]
Lee, Jung-Yong [2 ]
Jung, Yujin [3 ]
Baek, Se-Woong [1 ]
机构
[1] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn EE, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Korea Univ, Inst Energy Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
CHARGE-TRANSPORT; ENERGY-TRANSFER; MORPHOLOGY; BULK; DYNAMICS; BLEND; DOTS; RECOMBINATION; GENERATION; INTERLAYER;
D O I
10.1155/2023/4911750
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
引用
收藏
页数:14
相关论文
共 71 条
[11]   Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics [J].
Choi, Min-Jae ;
de Arquer, F. Pelayo Garcia ;
Proppe, Andrew H. ;
Seifitokaldani, Ali ;
Choi, Jongmin ;
Kim, Junghwan ;
Baek, Se-Woong ;
Liu, Mengxia ;
Sun, Bin ;
Biondi, Margherita ;
Scheffel, Benjamin ;
Walters, Grant ;
Nam, Dae-Hyun ;
Jo, Jea Woong ;
Ouellette, Olivier ;
Voznyy, Oleksandr ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Jung, Yeon Sik ;
Sargent, Edward H. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[12]   Polymer-quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor [J].
Dang-Trung Nguyen ;
Sharma, Sunil ;
Chen, Show-An ;
Komarov, Pavel V. ;
Ivanov, Viktor A. ;
Khokhlov, Alexei R. .
MATERIALS ADVANCES, 2021, 2 (03) :1016-1023
[13]   Solution-processed colloidal quantum dot photovoltaics: A perspective [J].
Debnath, Ratan ;
Bakr, Osman ;
Sargent, Edward H. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4870-4881
[14]   Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction [J].
Ding, Chao ;
Wang, Dandan ;
Liu, Dong ;
Li, Hua ;
Li, Yusheng ;
Hayase, Shuzi ;
Sogabe, Tomah ;
Masuda, Taizo ;
Zhou, Yong ;
Yao, Yingfang ;
Zou, Zhigang ;
Wang, Ruixiang ;
Shen, Qing .
ADVANCED ENERGY MATERIALS, 2022, 12 (35)
[15]   Influence of polymer-blend morphology on charge transport and photocurrent generation in donor-acceptor polymer blends [J].
Frost, Jarvist M. ;
Cheynis, Fabien ;
Tuladhar, Sachetan M. ;
Nelson, Jenny .
NANO LETTERS, 2006, 6 (08) :1674-1681
[16]   Improving Polymer/Nanocrystal Hybrid Solar Cell Performance via Tuning Ligand Orientation at CdSe Quantum Dot Surface [J].
Fu, Weifei ;
Wang, Ling ;
Zhang, Yanfang ;
Ma, Ruisong ;
Zuo, Lijian ;
Mai, Jiangquan ;
Lau, Tsz-Ki ;
Du, Shixuan ;
Lu, Xinhui ;
Shi, Minmin ;
Li, Hanying ;
Chen, Hongzheng .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) :19154-19160
[17]   Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting [J].
Ghimire, Sushant ;
Biju, Vasudevanpillai .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2018, 34 :137-151
[18]   Improving charge transport and reducing non-radiative energy loss via a nonacyclic carbazole-based third component for over 18% efficiency polymer solar cells [J].
Gong, Yongshuai ;
Yu, Runnan ;
Gao, Huaizhi ;
Ma, Zongwen ;
Dong, Yiman ;
Su, Yi-Jia ;
Chen, Tsung-Wei ;
Hsu, Chain-Shu ;
Tan, Zhan'ao .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (13) :7090-7098
[19]   Recent advances in PM6:Y6-based organic solar cells [J].
Guo, Qing ;
Guo, Qiang ;
Geng, Yanfang ;
Tang, Ailing ;
Zhang, Maojie ;
Du, Mengzhen ;
Sun, Xiangnan ;
Zhou, Erjun .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (08) :3257-3280
[20]   Polymer-Polymer Forster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells [J].
Gupta, Vinay ;
Bharti, Vishal ;
Kumar, Mahesh ;
Chand, Suresh ;
Heeger, Alan J. .
ADVANCED MATERIALS, 2015, 27 (30) :4398-4404