Vertex 2-arboricity of planar graphs without 4-cycles adjacent to 6-cycles

被引:0
作者
Nakprasit, Kittikorn [1 ]
Ruksasakchai, Watcharintorn [2 ]
Sittitrai, Pongpat [1 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Kasetsart Univ, Dept Math Stat & Comp Sci, Fac Liberal Arts & Sci, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
关键词
Arboricity; Planar graph; Discharging method; POINT-ARBORICITY;
D O I
10.1016/j.tcs.2022.11.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The vertex-arboricity of a graph G, denoted by symbolscript is the minimum number of subsets in which V symbolscript can be partitioned so that each subset induces a forest. It is known that symbolscript <= 3 for every planar graph G and symbolscript <= 2 if G is a planar graph without k-cycles where k E {3, 4, 5, 6, 7}. Recently, Cui et al. proved that symbolscript <= 2 if G is a planar graph without 4-cycles intersecting with 6-cycles. In this paper, we extend the result of Cui et al. by showing that symbolscript <= 2 if G is a planar graph without 4-cycles adjacent to 6-cycles.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 15 条
  • [1] Planar Graphs Without 4-Cycles Adjacent to 3-Cycles Are List Vertex 2-Arborable
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (03) : 234 - 240
  • [2] Vertex arboricity of planar graphs without intersecting 5-cycles
    Cai, Hua
    Wu, Jianliang
    Sun, Lin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 365 - 372
  • [3] POINT-ARBORICITY OF A GRAPH
    CHARTRAND, G
    KRONK, HV
    WALL, CE
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) : 169 - +
  • [4] POINT-ARBORICITY OF PLANAR GRAPHS
    CHARTRAND, G
    KRONK, HV
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P): : 612 - +
  • [5] Vertex-arboricity of planar graphs without intersecting triangles
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 905 - 923
  • [6] A note of vertex arboricity of planar graphs without 4-cycles intersecting with 6-cycles
    Cui, Xuyang
    Teng, Wenshun
    Liu, Xing
    Wang, Huijuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 836 : 53 - 58
  • [7] Planar graphs without cycles of specific lengths
    Fijavz, G
    Juvan, M
    Mohar, B
    Skrekovski, R
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (04) : 377 - 388
  • [8] Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
  • [9] Hakimi S.L., 1989, SIAM J. Discrete Math, V2, P64, DOI DOI 10.1137/0402007
  • [10] Vertex arboricity of planar graphs without chordal 6-cycles
    Huang, Danjun
    Wang, Weifan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (02) : 258 - 272