Double-Edged Sword Effect of Classical Strong Metal-Support Interaction in Catalysts for CO2 Hydrogenation to CO, Methane, and Methanol

被引:24
作者
Xie, Yu [1 ,2 ]
Wen, Junjie [1 ,2 ]
Li, Zonglin [1 ,2 ]
Chen, Jianjun [1 ,2 ]
Zhang, Qiulin [1 ,2 ]
Ning, Ping [1 ,2 ]
Hao, Jiming [1 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Natl Reg Engn Ctr Recovery Waste Gases Met & Chem, Kunming 650500, Peoples R China
[3] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100084, Peoples R China
来源
ACS MATERIALS LETTERS | 2023年 / 5卷 / 10期
基金
中国国家自然科学基金;
关键词
FISCHER-TROPSCH SYNTHESIS; SELECTIVE HYDROGENATION; HETEROGENEOUS CATALYSTS; TUNING SELECTIVITY; TITANIUM-OXIDE; NI CATALYSTS; PD CATALYSTS; TEMPERATURE; PERFORMANCE; NANOPARTICLES;
D O I
10.1021/acsmaterialslett.3c00640
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interesting phenomena such as encapsulation, charge transfer, and bond formation, etc. induced by classical strong metal-support interaction (SMSI) during high-temperature reduction have received wide attention for their potential to determine the catalytic behavior of supported metal catalysts. However, a systematically scientific understanding about the effects of SMSI on CO2 hydrogenation performance is still insufficient primarily due to the diversities in catalysts and reaction conditions. Here, we outline the "double-edged sword effects" of SMSI on the catalytic activity, stability, and even selectivity of hydrogenation of CO2 to C1 high-value compounds (CO, methane, and methanol). Specifically, moderate SMSI could efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. Nevertheless, excessive SMSI is fatal for methanation and methanol synthesis catalysts, because the encapsulation of active centers suppresses the further hydrogenation of reactive intermediates. Additionally, SMSI could alter the CO2 hydrogenation selectivity by regulating the dissociation of H-2 and the breakage of C-O bonds. Subsequently, the structural dependencies of SMSI on supported catalysts are emphasized with the aim of providing guidance for developing CO2 hydrogenation catalysts with an appropriate SMSI by rational design. To conclude, highlighted perspectives on the deeper understanding of SMSI in CO2 hydrogenation catalysts are also presented.
引用
收藏
页码:2629 / 2647
页数:19
相关论文
共 162 条
[1]   Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts [J].
Abdel-Mageed, Ali M. ;
Wiese, Klara ;
Parlinska-Wojtan, Magdalena ;
Rabeah, Jabor ;
Brueckner, Angelika ;
Behm, R. Juergen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
[2]   Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction [J].
Aitbekova, Aisulu ;
Wu, Liheng ;
Wrasman, Cody J. ;
Boubnov, Alexey ;
Hoffman, Adam S. ;
Goodman, Emmett D. ;
Bare, Simon R. ;
Cargnello, Matteo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (42) :13736-13745
[3]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[4]   A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons [J].
Atsbha, Tesfalem Aregawi ;
Yoon, Taeksang ;
Seongho, Park ;
Lee, Chul-Jin .
JOURNAL OF CO2 UTILIZATION, 2021, 44
[5]   CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Ahmad, A. .
GREEN CHEMISTRY, 2015, 17 (05) :2647-2663
[6]   The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction [J].
Beck, Arik ;
Huang, Xing ;
Artiglia, Luca ;
Zabilskiy, Maxim ;
Wang, Xing ;
Rzepka, Przemyslaw ;
Palagin, Dennis ;
Willinger, Marc-Georg ;
van Bokhoven, Jeroen A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies [J].
Bian, Yufang ;
Xu, Chunying ;
Wen, Xueying ;
Xu, Leilei ;
Cui, Yan ;
Wang, Shuhan ;
Wu, Cai-e ;
Qiu, Jian ;
Cheng, Ge ;
Chen, Mindong .
FUEL, 2023, 331
[8]   Control of titania nanodomain size as a route to modulate SMSI effect in Pt/TiO2 catalysts [J].
Bonne, Magali ;
Samoila, Petrisor ;
Ekou, Tchirioua ;
Especel, Catherine ;
Epron, Florence ;
Marecot, Patrice ;
Royer, Sebastien ;
Duprez, Daniel .
CATALYSIS COMMUNICATIONS, 2010, 12 (02) :86-91
[9]   In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel [J].
Caballero, Alfonso ;
Holgado, Juan P. ;
Gonzalez-delaCruz, Victor M. ;
Habas, Susan E. ;
Herranz, Tirma ;
Salmeron, Miquel .
CHEMICAL COMMUNICATIONS, 2010, 46 (07) :1097-1099
[10]   Fabrication of Pd/In2O3 Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO2 Hydrogenation to Methanol [J].
Cai, Zhongjie ;
Huang, Meng ;
Dai, Jiajun ;
Zhan, Guowu ;
Sun, Fu-li ;
Zhuang, Gui-Lin ;
Wang, Yiying ;
Tian, Pan ;
Chen, Bin ;
Ullah, Shafqat ;
Huang, Jiale ;
Li, Qingbiao .
ACS CATALYSIS, 2022, 12 (01) :709-723