Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning

被引:52
作者
Han, Yupeng [1 ,2 ]
Peng, Hu [1 ,2 ]
Mei, Changrong [1 ]
Cao, Lianglin [1 ]
Deng, Changshou [1 ]
Wang, Hui [3 ]
Wu, Zhijian [4 ]
机构
[1] Jiujiang Univ, Sch Comp & Big Data Sci, Jiujiang 332005, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang 330013, Peoples R China
[3] Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Peoples R China
[4] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiobjective optimization; Differential evolution; Multistrategy; Reinforcement learning; Reference point adaptation; NONDOMINATED SORTING APPROACH; OPTIMIZATION; PERFORMANCE; MOEA/D; SELECTION; MUTATION; SET;
D O I
10.1016/j.knosys.2023.110801
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective evolutionary algorithms (MOEAs) have gained much attention due to their high effectiveness and efficiency in solving multiobjective optimization problems (MOPs). However, when solving MOPs, it is important but difficult to maintain a good balance of exploration and exploitation. In addition, some reference point based MOEAs with fixed reference points perform poorly on MOPs with irregular frontiers. Therefore, this paper proposes a new multistrategy multiobjective differential evolutionary (DE) algorithm, named RLMMDE. In RLMMDE, a multistrategy and multicrossover DE optimizer is utilized to alleviate the exploration and exploitation dilemma. An adaptive reference point activation mechanism based on RL is proposed to activate the adaptive adjustment of reference points. Moreover, a reference point adaptation method is proposed to improve the performance of RLMMDE on irregular frontier problems. Experimental results of RLMMDE tested on some benchmark test suites (i.e., ZDT, DTLZ, UF, WFG, and LSMOP) and two practical mixed-variable optimization problems show that the algorithm outperforms some advanced MOEAs.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 89 条
[1]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[2]  
[Anonymous], 2001, COMPUT ENG KANGAL RE
[3]  
Bujok Petr, 2020, Artificial Intelligence and Soft Computing. 19th International Conference, ICAISC 2020. Proceedings. Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science (LNAI 12415), P363, DOI 10.1007/978-3-030-61401-0_34
[4]   Reinforcement Learning-Based Differential Evolution With Cooperative Coevolution for a Compensatory Neuro-Fuzzy Controller [J].
Chen, Cheng-Hung ;
Liu, Chong-Bin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) :4719-4729
[5]   A Many-Objective Evolutionary Algorithm With Enhanced Mating and Environmental Selections [J].
Cheng, Jixiang ;
Yen, Gary G. ;
Zhang, Gexiang .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (04) :592-605
[6]   Test Problems for Large-Scale Multiobjective and Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) :4108-4121
[7]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[8]   A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling [J].
Cheng, Ran ;
Jin, Yaochu ;
Narukawa, Kaname ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (06) :838-856
[9]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[10]  
Corne D., 2001, Proceedings of the Genetic and Evolutionary Computation Conference GECCO'2001, P283, DOI [DOI 10.5555/2955239.2955289, 10.5555/2955239.2955289]