A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network

被引:4
|
作者
Han, Xiaoyu [1 ]
Cao, Yunpeng [2 ]
Luan, Junqi [2 ]
Ao, Ran [2 ]
Feng, Weixing [1 ]
Li, Shuying [2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing; switchable normalization; ROTATING MACHINERY; EXTRACTION; NOISE; SPEED; VMD;
D O I
10.3390/machines11020185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming to address the problems of a low fault detection rate and poor diagnosis performance under different loads and noise environments, a rolling bearing fault diagnosis method based on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The method effectively extracted the fault features from the raw vibration signal and suppressed high-frequency noise by increasing the convolution kernel width of the first layer and stacking multiple layers' convolution kernels. To avoid losing the intensity information of the features, the K-max pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve the generalization ability, a switchable normalization approach was used after each convolutional layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under different loads and demonstrating a better anti-noise performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [42] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [43] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [44] Convolutional Neural Network Based Bearing Fault Diagnosis
    Duy-Tang Hoang
    Kang, Hee-Jun
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 105 - 111
  • [45] Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks
    Zhang, Huichao
    Shi, Peiming
    Han, Dongying
    Jia, Linjie
    MEASUREMENT, 2023, 217
  • [46] Rolling Bearing Fault Diagnosis Method Based on Multilayer Noise Reduction Technology and Improved Convolutional Neural Network
    Dong S.
    Pei X.
    Wu W.
    Tang B.
    Zhao X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (01): : 148 - 156
  • [47] Unsupervised rolling bearing fault diagnosis method across working conditions based on multiscale convolutional neural network
    Fu, Haiyue
    Yu, Di
    Zhan, Changshu
    Zhu, Xiangzhen
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [48] An Integrated Method of Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network Optimized by Sparrow Optimization Algorithm
    Dong, Shuyuan
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [49] Research on the seagull optimization algorithm-based convolutional neural network rolling bearing fault diagnosis method
    Xue, Jijun
    Liu, Xiaodong
    Xu, Hao
    Zhang, Di
    ENGINEERING RESEARCH EXPRESS, 2023, 5 (03):
  • [50] Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
    Xu, Gaowei
    Liu, Min
    Jiang, Zhuofu
    Soeffker, Dirk
    Shen, Weiming
    SENSORS, 2019, 19 (05)