A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network

被引:4
|
作者
Han, Xiaoyu [1 ]
Cao, Yunpeng [2 ]
Luan, Junqi [2 ]
Ao, Ran [2 ]
Feng, Weixing [1 ]
Li, Shuying [2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing; switchable normalization; ROTATING MACHINERY; EXTRACTION; NOISE; SPEED; VMD;
D O I
10.3390/machines11020185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming to address the problems of a low fault detection rate and poor diagnosis performance under different loads and noise environments, a rolling bearing fault diagnosis method based on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The method effectively extracted the fault features from the raw vibration signal and suppressed high-frequency noise by increasing the convolution kernel width of the first layer and stacking multiple layers' convolution kernels. To avoid losing the intensity information of the features, the K-max pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve the generalization ability, a switchable normalization approach was used after each convolutional layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under different loads and demonstrating a better anti-noise performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [32] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [33] Research on rolling bearing fault diagnosis method based on AMVMD and convolutional neural networks
    Zhang, Huichao
    Shi, Peiming
    Han, Dongying
    Jia, Linjie
    MEASUREMENT, 2023, 217
  • [34] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [35] Research on the seagull optimization algorithm-based convolutional neural network rolling bearing fault diagnosis method
    Xue, Jijun
    Liu, Xiaodong
    Xu, Hao
    Zhang, Di
    ENGINEERING RESEARCH EXPRESS, 2023, 5 (03):
  • [36] A reinforcement neural architecture search convolutional neural network for rolling bearing fault diagnosis
    Li, Lintao
    Jiang, Hongkai
    Wang, Ruixin
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [37] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [38] Improved convolutional capsule network method for rolling bearing fault diagnosis
    Zhao X.-Q.
    Chai J.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (05): : 885 - 895
  • [39] Rolling Bearing Real Time Fault Diagnosis Using Convolutional Neural Network
    Zhou, Funa
    Zhou, Wei
    Chen, Danmin
    Wen, Chenglin
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 377 - 382
  • [40] Rolling Bearing Compound Fault Diagnosis Based on Parameter Optimization MCKD and Convolutional Neural Network
    Gao, Shuzhi
    Shi, Shuo
    Zhang, Yimin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71